l.—-&. """..I‘

NACA TN No. 1788

i

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE
No. 1786

RECOMMENDATIONS FOR NUMERICAL SOLUTION OF REINFORCED-"
PANEL AND FUSELAGE-RING PROBLEMS
By N. J. Hoff and Paul A. Libby

Polytechnic Institute of Brooklyn

~N

Washington
December 1948




WAL l‘l

31176 01433
NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE NO; 1786

RECOMMENDATIONS FOR NUMERICAL SOLUTION OF REINFORCED-
PANEL AND FUSELAGE-RING PROBLEMS

By N. J. Hoff and Paul A. Libby
SUMMARY

Procedures are recommended for solving the equations of equilibrium
of reinforced panels and isolated fuselage rings as represented by the
external loads and the operations table establlshed according to
Southwell's method. From the solution of these equations the stress
distribution can be easily determined. Thd recommendations are based on
the experience of the past L4 years in applying numerical procedures to
monocoque stress analysis at the Polytechnic Imstlitute of Brooklyn
Asronsutical Laboratories. The method of systematic relaxations, the
matrix calculus method, and several other methods applicable in special
cases are discussed.

Definite recommendations are made for obtaining the solution of
reinforced-pansl problems which are generally designated as shear lag
problems. The procedures recommended are demonstrated in the analysis
of a number of panels, several of which were discussed in previous
PIBAL reports, whersas others are shown for the first time.

Tn the case of fuselage rings it i1s not possible to make definite
recommendations for the solution of the equilibriuvm equations for all
rings and loadings. However, suggestions based on the latest experlence
are made and demonstrated on several rings.

INTRODUCTION

The application of the indirect methods of Hardy Cross (reference 1)
and R. V. Southwell (reference 2) to the analysls of monocoque structures
has been shown in a series of investigations (references 3 to 8) carried
out at the Polytechnic Institute of Brooklyn Aeronautical Laboratories.
These indirect methods are likely to lead to solutions of problems in
gtress esnalysis that are intractable by direct analytical meothods because
the structure is tapered, has large cut-oute, 1lts reinforcing elements
are distributed irregularly, or the like.

The distorted shape corresponding to equilibrium under the applled
loads is determined first in the indirect methods. From 1t the stresses,
forces, and moments required can be calculated without difficulty. This
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approach is Justified by the comparative ease with which the stresses in
. & complex structure can be determined for an individusl displacement of -
one point and with which the final distorted shape of a complex structure
cen be represented by a summation of such Individual displacements.

The complete structure is considered to be composed of appropriate
elements and 1ts degrees of freedom are the digplacements of the several
reference polnts on the boundary of each element: Tach of these points
is dlsplaced in turn and the reactlons at the reference points caused by
the displacement are listed. If by sultable displacements of all polnts
the reaction forces and momente are made equal and opposlte to the
external loads at each polnt, the whole structure is in equilibrium and
ite distorted shape 1is determined.

In spplying the indirect methode to monocoque structures the termi-
nology of Southwell (reference 2) has been retained. Thus, the elements
which compose the complete structure are "units" and the determination
of the forces and moments due to a displacement of a boundary point of
such units is termed the 'hnit problem.” The magnitudes of these forces
and moments are glven by influence coefficients.” The complete effect
of a displacement is given in an 'operations teble,” and the step-by-
step process, which can be employed to determine the equilibrium
dlstorted shape 1s called the 'method of systematic relaxations.”" At
each step of this process forces and moments referred to as '"residuals'
remain unbslenced at each polnt in the structure. A running account of-
the residuals and of the displacements or 'operations" undertaken is
kept in the 'relaxation table."”

The operations table along with the external forces comstitutes a
system of linear equations, which are equal in number to the degrees of
freedom of the structure and which have as variables the dlsplacements.
Bach equatlon represents the condition of-equilibrium for the force or
moment assoclated with one degree of freedom. When the method of system-
atic relaxations 1s applied an epproximaste s€olutlon to this system of
equations and accordingly an approximate equillbrium state of the struc-
ture are found.

The indirect method of analysis Just—outlined has been applied at
PIBAL to the reinforced-panel and ring componenty 6f a monocoque struc-
ture as well as to complets clrcular cylinders with and without cut-outs.
In references 3 and k-the stress distridbution in the sheetand stringers
of a relnforced panel was determined under loads applied parallel to the
stringers. Fuselage rings with and without Internal bracing elements
wore investigated 1n reference 5. The determination of-the influence
coefficlents for the ring unit problem was found to Involve considerable
computational work and therefores appropriate graphs and tables are
glven in reference 6 to facilitate their calculation. In references 7
end 8 the elements, nemely, the reinforced panel and the ring, are
combined ints & circular cylinder and the stress distribution in the
cylinder was investigated for the case when the loading ls & pure bending

moment .

A
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In the application of the indirect-stress-analysis methods to the
problems mentioned the major obstacle has been to find an approximate
solution of the system of equations with a reasonable expenditure of
effort. In each problem it has been readily possible to establish
satisfactory units and to combine them to represent the complex struc-
ture. During the past 4 years considerable experience has been gained
at PIBAL in overcoming this obstacle to the wlder application of numerical
procedures in the analysis of monocoque structures. On the basis of this
experience some recormendations can be made as to the most expeditious
method of solving relnforced-panel and fuselage-ring problems after the
operations table has been establlished as described 1n referemces 3 to 5.

In many problems solution of the set of linear equations by means of
matrix algebra was found easler and less time consuming than the
determination of the displacements by systematic relaxations. In other
cases speclal methods, such as the growlng-unit method, proved to be
most expeditious.

It is assumed that the reader 1s familiar with the terminology of
Southwell's relaxstion method and with the solution of the unit problem
as well as the establishment of the operations table for both the
reinforced-panel and fuselage-ring problems. Complete details of these
are glven in references 3 to 6.

This work, carried out at the Polytechnlc Institute of Brooklyn, was
sponsored by a.nd conducted with the flnanclal assistance of the Na.tiona.l
Advisory Committee for Aeronautics. Arnold O. Ostrand contributed the
growing-unit method for reinforced panels. The authors also wilsk to
acknowledge their indebtedness to the following members of the staff of
the Polytechnic Institute of Brooklyn: Professors George B. Hoadley and
Williem Maclean of the Department of Electrical Englneering for their

work on the electric amaslogue, Burton Erickson for carrying out the
major portion of the computations, and Bruno A. Boley for his editorial
advice.

SYMBOLS
A cross-sectional area of stringer and effective sheet
A -~ Q points.on a ring or a reinforced panel; group operations
A¥ effective shear area of ring section
a distance between adlacent longltudinal stringers
b distance between adjacent transverse stringers

c electrical conductance
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Young ‘s modulus of elasticity

tensile force in stringer; applied external load
shear modulus of elasticity

horizontal direction

moment of inertla of cross sectionj electrlcal current
group operatlons

length of straight-bar or length of arc of curved bar
bending moment

moment acting on a Joint

shear flow

radial force acting at a Jointj electrical resistance
tangential force acting on a Joint

sheet thickness

displacemsnt of a Joint in tangential direction
electrical potentialj vertical dlrection

displacement of a Joint in radial directlon; dlsplacement of-
a Joint in vertical direction

vertlical block displacement

rotation of a Joint—

magnitude of group operation to be determined
rectangular coordinates

force in y-axis direction

engle subtended by ring segment
gection-length parsmeter (ALQ/I)

ratio of effective shear area t¢ temslon area (A%/A)

éummgtion

>~
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RETNFORCED PANELS

Introduction

In this section plane and slightly curved reilnforced panels are
discussed when the loads are applied 1n the plane of the flat panels or
tangentially to the surface of the slightly curved pamnels.

In most airplane structures there 1s a predominant direction in
which the major forces act and iIn which the major reinforcing elements
lie. When the panel is symmetrlc and symmetrically loaded experlence
has shown that it sufflces to consider displacements and force equi-
1ibrium in the predominsnt directlion only. FEven when the structure or
the loads are nonsymmetric, the displacements and forces in the trans-
verse direction are u.sua.lly of secondary lmportance but they ma.y be
considered in & more refined analysis.

In references 3 and 4 numerical procedures for the determination of
the stress distribution in relnforced panels subJected to axial stringer
loads are developed and demonstrated on several flat and curved panels
with and without cut-outs. The results obtained by means of these
procedures are in good agreement with those of tests.

Solution of the system of equations represented by the operations
table and the external forces can be found by several methods, five of
which are described herein. The various conditions of loading and
structure which suggest the use of one method rather than another are
discusgsed.

Relaxation Method

For most reinforced-panel problems the relaxation method of
solution 1s the most suiteble. Simple group and block. operations lead
to a rapld eliminstion of the reslduals and require little inltiative
on. the part of the computer familiar with the sequence of step-by-step
operations. The method, however, is not efficlent in the case of
panels with many baye in the directlon of the stringer loads or panels
with sheet covering of large shearing rigldity, since large forces are
then Introduced into adjacent stringers when one stringer is balanced.
These forces in turn must be liquldeted 1n successive operations with
the consequence that the procedure becomes time consuming. Also in
problems I1nvolving many loeding conditlions 1t may be expeditlous to use
the electric-analogy method described in the section entitled ''The
Electric Analogue, " gince in the relaxation method each new loading
requlires new step-by-step operations.

In this section panels are dlscussed which are not excluded from
application of the relaxation method by the foregoing considerations.
They may be classified according to the boundary conditlons of the
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stringers into four groups. Recommsndations for each group follow with
a fifth subsection added contalning suggestions for panels in which
transverse forces and displacements are considered.

(a) Panels with boundary conditions at both ends of gtringers speci-
fied in terms of force.- The followlng two procedures are recommended for
liquldating the residuals on a panel of this group:

First procedurs:

l. Consider each stringer isolated by cutting the sheet and the
transverse relnforcing elements. Select the stringer for which the
algebraic sum of the external forces 1s the largest: Displace the entire
stringer as & rigld body (block displacement) until this sum vanishes.

2. Balance cne end Joint of the stringer by displacing the adjacent
Joint on the same stringer.

3. After step 2 1s completed the end Joint 1s balanced but the Joint
that was moved is unbalanced. Displace the third Joint on the same
stringer until the second Joint 18 balanced.

4. Continue the procedure until the second end Joint is moved. In
this last step both the end Joint and the adjacent one will be approxi-
mately balanced at the seme time since the algebralc sum of a1l the forces
acting upon the stringer was zero after completion of step 1 aend this
equllibrium has been disturbed only slightly by the shear forces trans-
mitted by the sheet during the individual operations.

5. Stringer 1 is now approximately balsnced. Carry out the samse
procedure with the other stringers of the panel successively.

6. When all the stringers are epproximately balenced, return to the
. Tirst-stringer and balance 1t again by undertaking steps 1 to 4. Repeat
the procedurs with the other stringers until all the residual forces can
be consldered negligible for engineering purposes.

Second procedurs:

1. Consider sach stringer isolated by cutting the sheet and the
transverse reinforcing elements. Select the stringer for which the
algebraic sum of the external forces 1s the largest. Displace the entire
stringer as a rigld body (tlock displacement) until this sum vanishes.

2. Displace cne end point of this stringer so as to balance the
residual thereon. inger so as to 1 _

3. Displace by equal amounts the adjacent—Joint on the same stringer
and the end Joint which was balanced in step 2 so as to balance thils
second Joint. The equilibrium of the end Joint will be disturbed only
by & small amount due to shear in the sheet. a ' '
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4. Displace by equal amounts the third Joint on the same stringer
and the two Joints that were placed 1n approximate balance by the oper-
ation described in step 3 so as to- balance this third Joint.

5. Continue this procedure until the Jolnt next to the mldjoint of
the stringer is balanced by equal displacements of all the Joints
sltuated between it and the end Joint first displaced.

6. Ropeat the process described In steps 2 to 5, starting from the
other end Joint of the stringer and continuing to the midJjoint from this
directlon. After thls step is completed this stringer will be in
approximate balance, the only residuals being those Introduced 'by shear
in the sheet.

T. Consider next the stringer oﬁ either slde of the approximately
balanced stringer. Undertake a block displacement so as to equilibrate
externally the stringer under its residual forces.

8. Start at one end Joint of this stringer and apply steps 2 to 6.
This second stringer will be placed in approximate balance thereby,
while the balance of the first stringer willl be disturbed only through
the shear in the sheet.

9. Either return to the first balanced stringer or proceed to the
next stringer on the other side. IXach newly consildered stringer is
Pirst externally equilibrated under the extermal and resldual forces by
a block displacement. Then from each free end the residuals are
balanced by group displacements involving equal displacemsnts of all the
Jolnts situated between the ome in question and the free end. Continue
to balance Individual stri.ngers untll all are balanced.

The relaxation 'bs.bles for the panel shown in figure 1, for which
table 1 is the operatioms table, are used to demonstrate t.he first
and second procedures and are given as tables 2 and 3, respectively.
It will be noticed that thls operations tablé conslders the displacements
of only the Joints on the left half of the panel. The panel is symmet-
rical and is symmetrically loaded. Therefore, the displacements 1n the
Pbalancing process are undertaken symmetrically and only those of the left
side Joints need be consldered, those of the right being correspondingly
equal. Bince this panel has only three bays along each axlally loaded
stringer, the internal balancing process is undertaken from one end of

the stringer only.

(b) Panels with boundary conditions at one end of stringers specified
in terms of force and at other in terms of displacement.- This type of
problem occurs, for instance, when one end of the panel is attached to a
rigid body which is either held fixed in its poslition or 1s displaced a
given amount. The recommended procedure for penels of thls group is the
seme as the second procedure for panels in case (a) with two exceptioms:
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(1) No block displacements are needed (or possible) to equilibrate the
stringers externally asnd (2) the internal balancing process can be
started only from the one free end of each siringer.

The method 1s demonstrated on the panel shown in figure 2. It is
identical with the panel used for case (a) with the exception of the
fixed lower ends of.the vertical stringers. The operations table is
identical with that—of the previous panel except that no block and
no vy and o displacements are admissible. The relaxation table 1s

given as table 4.

(c) Panels with boundary conditions at-both ends of stringer
gpecified in terms of displacement.- Experience on panels of this type
indicates that, although no systematic process of balancing the residuals
can be recommended, the dlrect relaxation process 1s rapidly convergent.
By starting from the midpoint Joints on & stringer and by balancing
successive Joints toward the two fixed ends, the equilibrium positiorn
can be spproximetsd rapidly. A further suggestion regarding this type of
panel is contained in the later section 'Niles Tables. "

d) Panels with lrre gpeclfied bo conditions.- For such
panele & comblnation of the methods dlscussed under cases (a}, (b) , and
(c) is recommended. By judicious use of block end group operations
similar to-those of cases (a) and (b) rapid convergence of the relaxation
procedure will'be obtained.

ge! Panels in which transverse dlsplacemsnts and forces are

considered.- There are two gemeral procedures for treating panels in
which the transverse displacements and forces, usually cansldered negli-
glble, are treated. These are described in the following paragrephs:

First procedure:

The procedure discussed under cases (a) and (b) can be applled to
pansls with cut-outs. The stringers are approximately balanced in the
directlon of the major axial forces by these procedures and then the
resldusls normal to this direction are consldered. The same step-by-step
operations can be applied in balancing transverse stiffeners under these
transverse axial forces. The process of first balancing the stringers
in one direction, then balancing the stiffeners in the normal direction,
and then returning to the originally balasnced stringers will be quite
rapidly convergent for panels with sheet of low shearing rigldity.

Second procedure:

For panels with cut-outs requiring consideratlion of the transverse
forces another procedure, which is demonstrated in reference 4%, can be
used. The panel 1s flrst consldered to have contimious sheet and stringers,
as 1f the cut-out did not exist, and the dlsplacements for equilibriuvm of
this panel under the extermal loade are determined by the usual methods.
These displacements are then applied as a first approximation to the
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distorted shape of the actual pa-.nel with cut-outs. Displacements lsading
to a closer epproximation are then undertaken. This procedure 1ls found
to be reascnebly successful for the cases investigated in reference k.

Matrix Celculus Method

The operations table together with the external forces can be
considered as a system of linear equilibrium equations with the magnitudes
of the displacements as the unknowns. Therefore, the methods of matrix
calculus can be appllied to find the solution of this system by direct
mathematical means. The method descrlibed in reference 9 1is recommended
since a check on the calculations l1s maintalned &t each step in the
process of solution.

Matrix methods of solution have several advantages. After the
operations teble is established by trained engineering persommel, the
solutlon can be obtained by computing personnel familiar with the matrix
calculus method. TUnder some conditions thls economlic advantage may be
important. For reinforced panels with sheet of high shearing rigidity
the relaxation procedures are slowly convergent oven when the recommen-
dations given in the preceding section are observed. The matrix calculus
method 1s not affected by this physical characteristic of the structure.

When the number of equatlons 1z greater than 30 or L0, the work of
computation becomes inconveniently large. Therefore, for panels having
a sheet covering of small shearing rigldity relaxatlon methods are
recommended. When the sheet covering is very rigid in shear the matrix
method is likely to be more advantageous because the routine operations
of the matrix method can always be carried out if enough tims 1s allowed.

The equations of equilibrium for the panel shown in figure 1 are
glven by table 1 and are presented as follows to 1llustrate how the
operatlions teble and the external forces can be considered as a system of
equilibrium equations:



- 55.2vB + E.OOVE + 51.2vF =0 )
2.00vy ~ 101-6.VE + IL-OOVF + lr6.8vJ + 2.00v =0
SL.2vy + k.00vy - llO-le + 2.00vy + 51.2v =0
46.8v, + 2.00vy - 101.6v; + 4.00v + l;6.8vn + 2.00v, =0 >
2.00vp + 51.2vp + K.00vy - 110.4v + 2.00vy + 51.2v, =0
46.8v; + 2007 - 50.8v + 2.007, + 60 x 10% = 0
2.00v; + 5L.2vg + 2.00v = 55.2v, + 60 X 1% =0

T J

In consldering the operations table and the exbernal forcea as a sysbem of equilibrium
equations, care must be taken to restraln emough Joints so that the poaltlon of the pansl ag
a rigld body is fixed. In the present cage v, and v are assumed to be zero, and since

only dlaplacements in the y-direction are considered in thls problem, this restraint is
gufficient.

(1)

o1
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Growing-Unit 'Method

For relnforced panels with sheet of high shearing rigidity or with
a large number of bays in the directlon of the axlal forces, the relaxation
procedure is not rapidly convergent. In such problems elther the matrix
calculus or the growlng-unit method is recommended. The latter cen be
applied only to panels the boundary conditions of which are specified in
terms of force at least at one end of the stringers.

The growling-unlt method epplied to reinforced panels 1s as follows.
The Joint at the free end of an arbitrarily selected unbalanced stringer,
called hereinafter the principal Joint and the principal stringer,
respectively, 1s displaced so as to liguldate the resldual on this Joint.
At the same tlme the Jolnts lying on adjacent paraliel stringers and the
same transverse stlffener are displaced so that the residuals that would
be otherwlise introduced by shear from the balanclng of the principal .
Joint as well as any external forces applied to these Joints are likewlse
liquidated. In the second operatlion the next Joint on the principal
stringer is relaxed while the previously balanced Joints on the first
transverse stiffener and the Joints on the second tramsverse stiffener
are kept 1n halance by sultable dlsplacements. After this second
operation no residuals .remein at the Joints of the first two transverse
gtiffeners. After a sufficlent number of repetitions of the procedure
all residuals wlll be confined to reaction polnts or will be liquidated;
the panel will then be In equllibrium.

This procedure is demonstrated on the panel shown in figure 3. The

physical properties of the panel are the same as those of the previously
discussed panels except for the addltional bay in the dirsction of the
axlal forces. Actually the convergence of the relaxation method for this
panel would be quite rapid, but for convenience the growing-unit method,
applicable when this convergence is slow, 1ls demonstrated thereon.
Table 5 1s the operatlions table for this panel and contalns not only the
individual operations but also the group operations of the growing-unit
meothod. Table 6 is the relaxation table in which these group operations
are used.

The group operations given in table 5 require some explanation. Im
order to avoild introducing a ?B residual when Joint A is relaxed by

application of operatiom (1), a vp displacement is applied, the magni-
tude of which can be calculated from the equatlion

- 55.2v + 2.00 =0 (2)
Thus operation (9) is vy = (2/55.2) = 0.0362 and (10) is a group

operation equal to the sum of operations (1) and (9), which liguidates
the resldual YA without introducing a YB unbalance-
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After operation (10) is used, unbalances exist at Joints E and F,
that is, on the second transverse stlffener. In order to balance these
without disturbing the recently established balance at A and B, two
group operatione are developed: omns permltting the balancing ofE and
one permitting the balancing of F. The magnitudes of Va and v

required to malntain the balance of A and B when a displacement
of vgp = 1 1s undertaken are given by the following equations:

|
(@]

- 50.8v, + 2.00vy + 46.8 =

(3)
E-OOVA - 55-27:8 + 2.00 =

1
(@)

These are satisfied by v, = 0.921, operation (11), and v = 0.0695,

operation (12). Operation (13) is therefore established as the sum of
operations (3), (11), and (12). The magnitudes of v, and vy

required to maintain the balance of A end B when a displacement—

of Vg = 1 1s undertaken are glven by the followlng eguatlons:

I
o

(4)

1]
(o]

2-OOVA - 5502VB + 51.2

These are satlsfled by v, = 0.0758, operation (1k), and vy = 0.923,

operation (15). Operation (16) 1s the sum of operations (&), (1L4),
and (15). Since group operations (13) and (16) both introduce Yy

and YF forces, the magnltudes xl3 and X1 of these groups

required to liguidate the -111-pound and -9-pound residuals at E and F,
respectively, are given by the followlng equatilons:

- 58-3xl3 + 9.l+xl6 - 111 =0

(5)
9.43:13 - 62.6xl6 - 9 =20
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Thus X5 = - 1.975 and x¢ = - 0.44h. Joints E and F are balanced

wlthout disturbing the halance of A and B by the use of these multiples
of operations (13) and (16).

In eliminating the residuals at Jolnts J and K multiples of
operations (13) and (16) are applied since these operations permit
displacements of B and F to be undertaken while the balance at A and B
is left undisturbed. When Jolnt J 1s dlsplaced a unlt amount, multiples
of operations (13) and (16), defined by the following equations, are
used so that the balance at A, B, E, and F is malntained:

i
(@]

- 58-3x,

3% 9.11.x16 + 46.8

(6)

9.)+xl3 - 62.6xl6 + 2.00

[l
O

The solution to these equations 1s x;3 = 0.828, operation (17), and
Xi¢ = 0.158, operation (18). Operation (19) is the sum of operations (5),
(17), and (18). '

In a similar menner gll the individual and group displacements
described in table 4 are found. It may be mentioned that in the present
exaemple no shearing stresses were set up in the middle bays because of
the symmetry of structure and loading. The originsl operations table
was already established in a manner which complied with these require-
ments of symmetry. When such is not the case or when there is a greater
number of stringers in the panel, displacements of principal stringer
Joints wlll, in general, cause residuals to sppear at more Joints so
that three or more, rather than two, simultaneous equations have to be
solved at each step.

Niles Tables

In reference 10, A. 5. Niles demonstrates for the solution of rein-
forced-panel problems a method which essentially parallels the previously
described relaxation method. The Niles meothod is a procedure for
balsncing a stringer by the use of tables which give the displacements
of each Jolnt on the stringer requlred to liquidate a residusal on & glven
Joint of the stringer. The tables are worked out for various emnd
conditions and sheet shearing rigidities.

Since reference 10 contalns tables only for sheet of relatively low
shearing rigidity, the Niles method is limited in this respect in the
seme way as the relaxatlon method. However, the tables can be employed
on stringers with the boundary conditions at both ends specified in
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terms of displacement; for such problems no step-by-step routine
relaxatlion method has been recommended. Also by use of the tables exact
balance of a stringer 1s galned after a single displacement of each
Joint, whereas I1n the relaxation method, because of the shear, small
unbalances remain after each Joint ls moved.

On the other hand, thé relasxation method can be applied to stringers
with irregularly spaced Jolnts for which no tables were set up by Niles.

Since in reference 10 several examples of the procedure _are given,
no application of the Niles method 1s shown herein.

Electric Anslogue

Another convenlent method of solving the problem of force digtri-
bution in a reinforced panel is that-in which the voltages are meassured
in an electric network which is so constructed as to make 1t a complete —
analogue of the reinforced panel. When sultable electric equipment is
avallable, an analogous network can be hoocked up and tested with very.
1ittle work- A particularly attractive property of- the stress-analysis
procedure by means of elsctric measurement 1s the ease wlth which the
effect upon the stress distribution of changes in loading and in dimen-
gions of the various structural elements of the reinforced panel can be
Investigated. Thisg permits the development of an efficient—design with
little eanalytic work.

The analogy between the forces transmitted through the differemt
structural elemsnts of the reinforced panel and the currents flowing
through the various branches of the direct-current network can be
explained with the aid of figures 4 and 5. The problem investigated is
the so-called '"one-dimensional shear lag." It is assumed that the trans-
verse stiffeners are infinitely rigid so that the vertical, or longitu-
dinal, displacements v alone need to be determined. The portion of
the sheetcovering conslidered effectlve 1n tension or compression is
added to the cross-sectional area of each stringer and the panels of
sheet are agsumed Lo carry shear stresses only. A conseguence of these
essumptions 1s that the shearing mtress mmst be constant 1n each panel.

The analogous dlrect-current network containg as many binding posts
as the number of Joints in the reinforced panel. AdJacent binding posts
are connected by conductors having prescribed resistances R. Prede-
termined electric currents I, which correspond to the forces F
epplied to Jointg A and B of the reinforced panel, are introduced into
the network at points A and B. .

It is now recalled that in the relaxstion method the Jjoints of .the
panel are first assumed to be rigidly fixed to a rigid wall behind the
‘panel. The external loads are first spplied to these rigid pegs,
referred to as the "comstraints."” The panel is obviously in equ;librium
under these conditions but this artificial equilibrium is emtirely
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different from that prevalling in the actual panel, which is not attached
to any rigid wall. The actual state of equilibrium is approached by the
gtep-by-step procedure of the relaxation method, in each step of which
one single comnstraint is removed end the corresponding Joint is displaced
until it reaches 1ts equilibrium position in the system in which all the
other Joints are still rigidly fixed.

For instence when Joint 1 of the relnforced panel is moved through
a distance v In the positive direction, this dlsplacement imposes
forces upon all the adjacent Joints numbered from 2 to 9. Three typical
forces are given by the equations:

Fgy = EA th) (1)
= v 3bt 8

F9l v e (8)
Fep =7 Gg:g"'t (9)

where

Fg1» Fgys Fgy the forces acting upon Jolnts 8, 9, and 6, respectively,
becausge of the displacement of Joint 1

E modulus of elasticity of stringer
G shear modulus of sheet

thickness of sheet
v displacement of Joint 1

In the case of the anslogous network it can be assumed that the
potential of each binding post is zero at the outset. If there is no
potentlal difference, no current flows between the posts. It can be
Imagined that the currents introduced at points A and B are taken out of
the system by means of some imaginary conductors. However, the actual
distribution of currents in the network prevaills without the ald of the
imaginary conductors. This actuel state can be approached also by means
of a step-by-step, approximation-type calculation. For instance it can
be assumed first that the potential of binding post 1 is elevated to the
value V. After this change there is a potential difference between
binding posts 1 and 8 and consequently a current will flow from post 1
to post 8. The magnitude of this current can be calculsted from the
equation

Igy = V/Rgy = CgyV (10)
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where 381 is the reslistance and 081 = 1/381 is the conductance of the

conductor between posts 1 and 8. Similarly the current flowing from
post=1 to post 9 1s

I

o1 v ' ) (11)

= 091

The current flowing from post 1 topost 6 is

I. =C

61 v (12)

61

Comparison of equations (7) to (9) with equations (10) to (12)
reveals an analogy between the effects of a displacement v of Joint 1
and the raising of the voltage of binding post 1 by an amount V. The
current caused by the change in potentlal corresponds to the force
caused by the displacement, provided that the conductance of each
conductor 1s made equal to the influence coefficlent in the corresponding
force equation. Hence

on - B - 22 &
- -
091 v (1h4)

In the relaxation procedure the equilibrium state is approached by
displacing Individually the Joints and summing the effectas of each
displacement. In exactly the same way the actual distribution of the
currents 1in the network can be determined by changing individually the
voltages of each binding post and summing the effects of these changes.
In the reinforced panel equilibrium is obtained when at each Jolnt the
sum of the extermal forces and of all the internal forces caused by the
displacements 1s zero. The forces are considered positive if they are
directed as the positive displacements. In the form of an equation,

> F=0 i N (16)
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An analogous equatlon in the dirsct-current network is furnished by
Kirchhoff's first law, according to which the sum of the currents flowing
into any binding post must be zero. Currents in the direction of any
binding post are consldered as positive. In the form of an equation,

St=0 (17)

14

Comparison of the last two equations reveals that the conditions of
equilibrium for the reinforced panel and Kirchhoff's first law in the
cagse of the direct-current network ccmplete the analogy of the two
systems considered. It is possible therefore to construct an electric
network with the same conflguration of blnding posts as that of the Joints
of the relnforced pamel. The conductances of the conductors connecting
the binding posts must be so chosen as to make them proportional to the
corresponding influence coefficients in the operations table of the
reinforced panel. If then currents are introduced at the binding posts
which correspond to the Joints at which external loads are applied, the
distribution of the currents in the network will be the same as the
distribution of the forces between the various structural elements of
the reinforced pamel.

In the first applications of the relaxation process to reinforced
panels sach Joint was displaced until equilibrium was established. It
was noted in the sectlon dealing with the solution of the problem by
metrix methods that this procedure permitted rigid body displecements of
the structure. Rigld body displacements can be eliminated if one or more
Joints are considered as rigidly fixed. In the case of the relnforced
pansel of figure 4 the degree of freedom of motion of each Joint is onse,
because the problem ls considered as a ons-dimensional shear lag problem.
Consequently it suffices to fix one single Joint so that it is prevented
from displacing vertically. However, 1f Joint C, for imstance, is fixed,
the symmetry of the structure and loading requlres the simultaneous
fixation of Joint D. :

In the analogous network blnding posts C and D are glven predster-
mined values of the potentials by commecting them to the ground. It is
customary to attribute the value zero to the potentlial of the ground.
Consequently Vi and Vp are zero Just as In the reinforced panel

Vo and. vp @are zero.

It will be noticed that in figure 4 the direction of F at
Joints A and B is upward, whereas the direction of I at binding posts A
end B in figure 5 is downward. This corresponds to the difference in
the sign conventlon in the two systems. In the panel upward forces were
consldered positive and in the network currents flowing toward the
binding posts were given the positive sign. The directions of the forces
and the currents at points C and D are the same. This again corresponds
to the correct signs required by the sign convention since the downward



18 : © ~  NACA TN No. 1786

forces at these points are negative Just as the currents which flow away
from the binding posts are negative. Hence the reinforced panel is
under the action of external temsile forces, whereas through the network
currents are flowing in the downward direction.

In the case under discussion 1t is easy enough to introduce the two
equa]i currents at posts A and B and to regulate their magnitude by means
of an adjustable rheostat. However, when there are a number of impreessed
currents of different magnlitude stipulated, thelr adJustment may become
a lengthy trial-and-error procedure. In such cases 1t 1s advantageous
to employ a mumber of commerclally available electronic devices, known
as congtant-current generators, which have the property of maintalning
& constant current lndependently of the properties of the network.

When the construction of the network is completed and the required
external currents are introduced, the deflection of any Joint of the
reinforced panel can be obtalned by meaesuring the potentlal of the
corresponding post 1n the network with respect to the ground. This
guantity multiplied by the conversion factor 1s the relative dlsplacement
of the corresponding Joint of the reinforced panel with respect to-the .
fixed points C and B. In most cases, however, the displacement quantities
are of interest only indirectly and the main quantitles sought are the
forces in the stringers and the shear stresses in the sheet. These
quantities can be obtained in a simple menner by multiplying potential
differences by the appropriate conductances and by the conversion factor.

For instance when the force in stringer segment 1-8 1s sought s The
voltage drop between posts 1 and 8 must be measured and multiplied by
the conductance 081 and the conversion factor. This is a consequence

of equations (7) and (10). Similarly when the shear stress in panel 1689
is required, the voltage drops in conductors 1-6 and 8-9 have to be
measured. From figure 4 the average displacement of stringer segment 6-9

is (v6 + 7g) /2 and the average displacement of stringer segment 1-8

is (vl + 78) /2. The difference of these two average displacements

multiplied by Gtb/a 1s the shear force transmitted from the panel

to stringer segment 6-9. Consequently the sum of—the displacement differ-
ences Vg - v, &nd V9 - 78 miltiplied by the influence coefficlent-1-6
1s the shear force sought. In other words the sum of the voltage drops
from post 1 topost 6 and from post—8 to post 9 multiplied by the
conductance Cg7; and the conversion factor 1s the shear force 1n questilon.

This shear force divided by the length b gives the average shear flow in
panel 1_689 and this shear flow divided by the thickness of the sheet is
the aveérage shear stress.

With the cooperation of the Department of Electrical Engineering a
network was constructed at the Polytechnic Imstitute of Brooklyn which
was the analogue of the reinforced panel investigated earlier at PIBAL
both experimentally and by relaxatlion methods. The results of these
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investigations are described in reference 3. The constant currents were
introduced by means of constant-current generators. In the electrical
system the unlt of the potential was chosen as 1 volt and that of the
current as 100 mllliemperes. Then the unit of the conductance had to be
a millimho and that of the resistance, a kllohm. In the mechanical

system the unit displacemsnt was l()")+ inch and the unit force, 1 pound.
Consequently in thls problem the voltege differences had to be multiplied

by the conversion factor 10'4 inch per volt in order to obtain displace-
ments. The factor converting currents into forces was 10 pounds per
empere. The results of the measurements were in excellent agreement with
the resulte quoted in reference 3.

Similer experiments were carried out by R. E. Newion and M. E. Engle
at the Curtiss-Wright Corporation, Airplane Division, in St. Louls and
are described In two reports listed as references 11 and 12. Newton's
approach to the problem is fundementelly the same as the argument given
kerein. However, his electric network 1s slightly simpler since 1t does
not contain the conductors arranged diagonally in the system shown in
figure 5. 'The network of figure 5 was chosen In this report in prefer-
ence to Newton's simpler network since by this presentation the iden-
ti1ty of the conductances of the network and the influence coefficients
used in the other parts of thls report could be estgblished.

It should be mentioned that in masny cases it 1s possible to construct
a dual type of network in which the currents correspond to the displace-
ments of the Joints of the reinforced panel and the potential differences
correspond to the forces 1n the stringers and in the sheet covering of
the panels. In this type of network the external loads can be introduced
more easily as Impressed potentlal differences. However, the network
described herein is more advantageous .since it can always be constructed
directly from the geometry of the reinforced panel.

The usefulness of the analogue with the dirsct-current network
breaks down when the influence coefficlent in equation (7) becomes
negetive. In such & case the conductance and consequently the resistance
of the corresponding branch of the network should be negative; this is
obviously imposslble. However, the situation can be usually remedied in
the case of one-dlmensional shear lag problems. The fundasmental assump-
tions of the problem are not changed 1f a number of additional horizontal
bracing elements are introduced in the panel since all of them are assumed
to be infinitely rigld. If, however, the panel length b 1is reduced
to one-half its original value, then the negative term in the influence
coefficient appearing in equation (7) is halved and the positive term is
doubled. In most cases this wlll suffice to change the sign of the
influence coefficient. When such 1s not the case distance b can be
reduced In any other sultebles ratio.

Negative influence coefficlents can be realized if the anslogous
network is fed by an alternating current. The quantity correspcnding in
an alternating-current circuit to the resistance of the direct-current
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clrcuit is the impedance. In the Impedance the inductance retards the
phase of the current and the capacitance advances it go that-the two
have opposite effects. If ome is deslgnated as positive, the other is
negative. However, no inductance is entirely free of resistance and for.
this reason the accurecy of a complicated alternating-current—metwork
may not be sufficlent for the solution of some of the problems encoun-
tered 1ln practice.

The use of the electric analogue for solution of shear lag problems
1g recommended when several simllar panels with many loading conditioms
are to be analyzed. For such & case the construction of the analogous
network, the variation of the loading by varying the lmpressed currents,
and the determination of the potentials at the binding posts would be
simpler than any enalytic method of solutiom.

FUSELAGE RINGS

Introduction

In reference 5 nime¥ical procedures for the determination of the
bending-moment-—digtribution in fuselasge rings are developed and demon-
strated on several simple and intexrnally braced fuselage rings. The
number of redundant internal bracing elements increases little the work
involyed in establishing the operations table for the ring and affects
not at all the amount of numerical work in the solution of-the operations
table. This nonsensitivity to the number of redundances constitutes the
advantage of this method in the analysisg of fuselage rings.

The methods suggested for the solutlon of-the systsm of equatlons
represented by the operaticns table and the external forces are three:
relaxation, matrix calculus, and growlng-unit. The latter two may be
consldered as direct mathematical methods and as in reinforced-panel
problems require only computing personnel. For the analysis of isoclated
fuselage rings of complex shape the use of these dlrect methods is
recommended since an accurate solution is assured 1in a reasoneble length
of time, whereas the relaxatlon method may not lead to sufficiemtly
accurate results even after considerable effort has been expended. How-
ever, for simply shaped rings and for problems of* stregs distribution in
sheet stringer, and ring comblnations, application of the relaxation
method to fuselage rings is advantageous For this reason the relaxation
method for fuselage-ring problems is presented and new, more repldly
convergent procedures are developed.

It has not been found possible to meke concrete reommmendations for
relaxation procedures which are rapldly convergent for all types of ring
and loading. However, satisfactory procedures for several dlstinct types
of ring and loasding are demonstrated and explained in some detail. It is
felt that considerastion of these examples will suggest to the analyst
means of solving more repidly other ring and cylinder problems which are
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not efficliently attacked by direct mathemastical means. The procedures 5
which Involve essentlally appropriate combined operations, are demon-
strated on two rings solved in reference 5 by the ususl relaxation
methods and on a new internally braced ring. Applicatlon of the growing-
unlt and matrix calculus methods to the latter problem is made to demon-
strate these methods and to verify the results of the relaxation
procedures.

Torsion of & Circular Ring

In reference 5 the bending-moment distribution for a simple
circular ring with antisymmetric loading consisting of concentrated
forces and distributed and constant shear flow is determined by appli-
cation of numerical methods. The dimensions and loading for this ring
are shown In figure 6 and the operations table is glven as teble 7.
Relaxation methods are applied to the solution of this ring problem in
reference 5. By a process of increasing all the residuals in such a
proportion that one key operation would liquidate them all to within
the desired degree of accuracy, the residuals were reduced to within
2 percent of the maximmm applied load in 12 operations.

In the present report combined operations which increase the
rate of convergence are demonstrated. Tangential and angular dis-
Placements of A end C balance these points in four operations and place
all remaining residuals at B. Since no tangential forces exist at
A and C, the force residual at B must be vertical and the moment
residual, equal to the couple of the vertical forces. Suppose the
residual moment at B 1s liquidated by a rotation of that Joint while
the balance of A and C 1s preserved by suitable displacements of A and C.
Then from equilibrium considerations the residusl forces at B must also
be llquidated. Thus in five operations balance will be obtained. This
procedure is used and proves to be satisfactory. .

In order to balence the residuals at A two combined operations
are developed. The first combines a unit angular displacement Wa

with a tengentisl displacement upy such that no tengential force at A

results when the two individusl operatlions are simultaneocusly applied.
The forces and moments introduced by the individual operations as well
ag by the combination are given In the following table:



Forces and
Operatiom—tomente Xy Ta B B T c
W, = 1073 radian 281.65 49.079 | -29.966 | -b.733 64.675
u, = 0.93848 x 1073 1n, 46.060 | k9.079 | -60.696 | 21.060 | -UB.34T
> —>Operation A = 1 -235.89 0 ~90.662 | 16.327 16.328

The second operation combines & wnlt tangential displacement Uy with an apguler rotation W
The forces and momente Ilntroduced

such that at A no moment arises from the combined operatilon.
by the individual operatilons as well as by the combined operatlion are given 1n the following

table:
Forcea and :
momenta LY Ty Ny Ry Tp T
Operation
uy = 1073 1. -49.079 | -52.296 | 64.675 | -22.441 51.516 0
Wy = 0-17407 x 1073 radtan | 49.079 | 8.5432 | s5.2162 | 0.82367 | -11.258 0
> -> Operation B = 1 0 43.753 | 69.801 | -21.617 %0.258 0

g
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Thus by using the necessary amounts of the combined operations A and B Joint A 1 balanced

in two operations. Two simllar operatlons are found for Joint C and are glven as follows with-
out explsnation:

Forces and |

operabion Tomemn s Nl Ta i Bl 0B Nc_ Te
W = 1073 radian o |o 56.512 | 8.842 6.632 -157.809 | -1.563
uy = -4.8540 x 1073 in. 0 | o |-3¢.192 | 2.5435 | -0.332% 7.5868 | 1.563
> ~> Operation C =1 0 | o 2k, 320 6.2985 | 6.2995 | -150.31 0

Forces snd

Opsrabion moments By | Ta 5 B : Re Te
e = 1073 1n. o |0 6.632 0.52k 0.0685 -1.563 | -0.322
W = -0.0098087 x 1073 radten [ 0 | 0 | -0.55939 | -0.08752 | -0.0656 1.563 0.01547
> > Operation D = 1 o |o 6.0726 0.43648 | 0.0029 0 -0.30653

In order %o balsnce the reaiduals at B without dlsturbing the balance et A end G obtalned by
use of operatioms A to D, combined operations involving tangential and angular displacements of
A and C and a unit rotation of B are developed. If Joint A is to remain in balance when a rotation
of B 1g wmdertaken, joint A must be rotated and displaced In such & marmer that the tangentilal
force and the moment introduced at A by this rotation of B are equilibrated. OSince the angular
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displacement introduces tangential forces at A, end the tangential
displacement Introduces moments, two simultaneous equations must be
solved for the wmknown tengential and angular displacements. The
equations for A are:

]
(o]

- 281.95w, - 49.079u, - 29.966 x 1073
(18)

I
o

- 49.079w, - 52.296uy + 64.675 x 1073

The solution to these equations is Wy = - 0.38434 x 10™3 radian and

up = 1.5974 % 10-3 inch. A unit rotation of B and tangential and

engular displacements of C are combined In equations (19) so that the
tengential force and moment -introduced at C by the combined operations
are zero.

|
(@]

- 157.899w; - 1.563ug + 56.5117 x 1073 =
(19)

i
o

- 1.563w; - 0.322u; + 6.632 x 1073

The solutlon to these equations is wgy = 0.16180 X 10™3 radian and
'uc =.190811 X 10—3 inCh.

If the forces and moments introduced by the three sets of—
dilsplacements (unit rotation of B, the tangential and angular dis-
Placements of A, and the tangentia.l and angular displacements of C)
are combined, a combined operation 1s obtalned such that only forces
and moments at B and radlal forces at A and C are introduced. These
latter forces are of no interest in the relaxation procedure since
they are equllibrated esutomatically by the other half of the ring. The
coumbined operation from these three sets of d.isplacemen’cs is given in
the following table:



Forces and :%
Operation—aomonts Np Ta Ty By Ts % To 5
Wy = 1073 radian 29.966 | 64.675 | 439.849 | 31.443 | -50.642 | 56.5117 | 6.632 Pi
Wy = -0.3843 x 1073 ragtan | 108.37 | 18.863| 11.517 1.81901 | -24.857 0 0 T?:'
uy = 1.597h x 1073 in. -78.399 |-83.538 | 103.31 |-35.847 | 8e.2o 0 0
wg = 0.16180 x 1073 radian | 0 0 9.1436 | 1.4306| 1.0730| -25.548 | -0.25289
ﬁc = 19.811 x 1073 1n. 0 0 131.39 10.361 1.3570 | -30.96% | -6.3791
> ~>Operation E = 1 | o 0 -18k.49 9-2267 9.5230_ o 0

The relaration teble uging these five combined operations, A to E, 1s given as teble 8. The
balancing process was carried put on a lide rule and after flve operations all the realduals were
reduced to negligible quantitlies. From the magnitudes of these group operations the total individual
displacements of A, B, and C can be found and the umknown radial forces at A and C ocalculated.

The procedurs Just described involves essentially the development of group operations so that
full sdvantege of the symmetry properties of the ring may be realized. This method 1s applicable
to other rings. The internally braced circular ring subjected to antisymmetric loads and analyzed
In reference 5 can be treated in the same wey as this simple ring. If these rings had been sym-
metrically loaded, the force residuals at B, after A and C had been balanced by simple radial
displacements, would have a horizontael resultant. By comblning redlal and tungential displacements
of A and C such that the resultent force Introduced at B is horizontal and such that A and C remain
in balance, the horizantal resultant at B could be liquidated by epplication of such a conbined
operation. The moment residusl at B is not necessarily eliminated whem the force residual at B 1s
balanced. dJoint B must be rotated whils A end C are displaced radially so that the moment at B ia

e
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liquidated and Jolnts A eand C are kept in balance. If the process of
liquidating first—the residual force and then the moment at B, preserving
In each operation the balance at—A and C, 1is not rapidly convergen‘c— two
equations for the equilibrium of B can be es'ba.'blished. and solved for the
required amounts of the combined operations.

Thus the foregoing procedures for both the symmetrical and anti-
symuetrical loading can be applied to any ring singly symmetrical with
only one Jolnt between the center line of symmetry Jolnts. It may,
therefore, be advantageous in some ring problems to combine several bars,
ag in the method of the growing unit, such that only one Joint betwsen
the boundary Joints has independent degrees of freedom. This will permit
use of the foregoing procedure.

Sufficlient accuracy for most engineering purposes can be obtained
in the computations of this procedure by the use of a2 slide rule through-
out. Although the combined operations shown herein were obtained by
the use of & compubting machine carrying five significant figures, the
procedure was flrst demonstrated with the use of a slide rule for all
calculations. The results ofthe two sets of calculations are in good
agreement, thus Indicating the sufflclency of slide-rule accuracy.

Egg-Shaped Ring

Figure 7 shows the ¢imensions of, and loading on, a ring which 1is
analyzed in reference 5. The operations table for this ring is given
ag table 9. In this ring there are two points B and C between the center
line of symmetry points A and D. By msking the degrees of freedom of
elther point B or ¢ dependent on the other and on the adjacent center
line of the symmetry point, one point with independent degrees of free-
dom 1ls established between A and D and the method discussed previously
can be used.

However, In order to demonstrate the simpliclty and effectiveness
of group operation.s , @nother approach 1s used. The center lines of
symuetry points A and D are balanced by simple radiel displacemsnts of
A and D. The midpolnt of bar BC is assumed restrained tangentlally so
that only equal and opposite tangentlial displacements of B and C are
underteken. Because of the large extensional stiffness of bar BC as
compared with the bending rigidity of the circular segments and because
the ring is almost symmetrical about & horizontal axis, such dis-
placements of B and C liquidate approximately equal and opposite
tangential residusl forces at B and C, such as those which will be
obtalned at these points when the residuals aggoclated with the other
degrees of freedom are small. .

If the balance at A and D is preserved by appropriate comblinations
of the radilel dilsplacements of-A and D with the required dilsplacements
of B and C and 1f the tangential residuals at B and C are not—considered
until the foregolng operation will liguldate them both, maln attention
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lg focused on the radial force and moment residuals at B and C. In
order to balance these, no speclific method of comvergence ls used but
the state of the residuals after each step is congldered before the
next operation is selected. In this problem of egg-shaped rings and
many other rings and in the complete cylinder problems this approach,
utilizing physical properties of the system and eliminating or reducing
extraneous forces and moments at each step in the relaxatlon process,
may be the most satisfactory method of solutlon. .

Table 10 is the relaxation table for the ring In question. Ths
first two operations involve only radial displacements which balance
the 500-pound forces at A and D. The largest residual then is the
radial force of 451 poumds at C. If point C is displaced radially so
as to balance this residual, a large moment and a large radlal force
are introduced at B. - In order to reduce these extraneous forces and
moments and to keep Joints A and D balanced, radial dlsplacements of
A, B, and D and a rotation of B are combined as shown by the following
operations:

- 3.34833v, + 8.92216w, ~ 2.6961kvy = 0O )
8.92216v, - 327.866wy + 11.4697vy + 8.10267 X 107* = 0
> (20)
- 2.6961kv, + 11.4697wy - 400991y + 0.66158 x 107* = 0
- 12.2400v;, - 1.11900 x 107% = 0
-~/
The solution of this system of equatioms 1s: v, = - 0.26384 x lO'LIL inch,
wg = 0.03279 X 107% redien, vg = 0.43618 x 107% inch, and
vy = - 6.902k x 107% inch.

The forces and moments introduced by each of the individual operations
end by the combination are given in the following table:
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Forces and R NB RB
moments
Opexration . A TB
vo = 107* 1n. 0 8.10267 | 0.66158 | o
v, = -0.26382+ x 107% 1n. 0.88343 -2.3540 0.71136 | -1.0468
w. = 0.03279 x 107 radten | 0.29258 [ -10.751 0.37612 4296
5 = O , -10.75 .37 -0-42963
vg = 0.43618 x 10~* 1n. -1.1760 5.0028 | -1.7h91 | 1.ko8h
vp = -0.90242 x 107¥ 1n. 0 0 0 0
> —> Operation F = 1 o 0 0 0.0219
Forces and
ments Ng Re To Rp
Operatlon
vg = 1074 1n. -2.95622 | -1.90205 | -0.88929 | -1.1190
v, =--0.2638k x 107* in. 0 0 0 0
wy = 0.03279 X 107% radien | -2.0082 0.26570 | © 0
v = 0.43618 x 10°% in. -3.5342 0.28857 | o© 0
vp = -0.90242 x 1074 in. 6.6350 1.00981 0.93626 1.1190
S > operation F = 1 -1.8636 | .-0.33798 | o0.oh697 | ©

The use of combined operation F is desirable in balancing the: radial
residual force at C, since it also reduces the moment residual at C and
adjuste the tangential residuels at B end C in the desired manner.

The residual considered after use of operation F is Rg = 402 pounds.
In order to balance 1t by a displacement Vg while the balance at A
displacement mist—be undertaken as well. If
2.60614
-3.34833 x 10

is preserved, a Vv,

vp = 1074 inch, then v, = = - 0.80522 x 107% inch. The



forces and moments Introduced by these individual opsratione ap well as by the combinations ere
given In the following table: _

Forces and
moments Ry L Ry Ty Hg B | To | Bp
Operation
v = 107 in. 2,69614 | 114697 | 400091 | 3.4352 |-8.10267 [0.66158 | o | o
v, = -0.80522 % 107 1n. 2.6961 | ~7.1843 | 2.1710 |-3.1949 | 0 0 o] o
> -> Operation G = 1 0 4.2854 | -1.83891 l 0.2k03 | -8.10267]0.66158 | 0 | ©

Conglder the effect of eliminating the Ry residual by use of operation G. The moment
residual NB would also be reduced by roughly 1000 inch-pounds, the E[']3 regldual would be
brought in closer agreement with the Ty residual, an Ry residual of about 30 percemt of the
previous R, residual of 45; pounds would be introduced, and & large N, residual would be

introduced. The last two effects are undesirable. However, by use of opsration ¥ again, the
Ry residuasl can be balenced without introducing a new Rg residusl. The large Ny resldual 1s

not so easily balsnced unless a new comblnation involving Jolnts A, B, and D,1s evolved.

Suppose, therefore, that a rotation of C and & radial dlsplacement of D are combined so that
a8 moment at C can be eliminated and so that the balance of D 1s preserved by use of the combination.
The individual operations and the combinations are given in the following table:

98LT °*ON NI VOVN



Foroes and
o—lgents % | % | B B % | K| L | m
W, = 0% redtan 0 |-61.242|-8.10%67 | o | -288.367 | -2.95622 | -5.2U667 | -7.3524
w) = -5.929k x 107% 1n.] 0 0 0 0 43.505 | 6.63500 | 6.1517 | 7.350h
?—ml 0 61.242 | -8.1027 | © -2 772 | 3.6788 b 0.90508 | ©

If operations G and H are combined so that the moment at C introduced by the combination
is zero, the resulting forces and momente are glven in the following table:

Forces and ) .
momsnta | Ry | Ty Ry B N R Tc Ry,
Operstion
1x (a) 0 | 4.28s54 { -1.83891 | 0.2403 -8.10267 | 0.66158 0 0
-0.033103 X (H) 0 | 2.0273 | 0.26822 | 0 8.10267 | 0.12178 -0.02996 | 0
> —>operation I =1 | 0 | 6.3127 | -L.5707 | 0.2403 0 0.53980 | -0.02996]| 0

Use of operation I results in llgquidation of the RB residual, in reduction in the
Ng residual, in adjustment of the Ty and T, residuals toward the desired equality, and in
introduction of an Ry residual of 138 pounds. The latter can be balanced by the use of
operation ¥, which will preserve the balance of A and D and will not affect the Ny and Ry
residuals.

ot
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After this fifth operation the Tp and Ty residuals are approxi-

mately equal and opposite as desired. Thereforse » & group operation,
Involving equal and opposite tangential displacements of B and C a.nd.
sufficlent radiasl displacements of A and D so that the latter remain
balanced, 1s developed in the following table:

Forces and

Operation momSnts RA NB RB TB NC
ug = 107% in. 3.96771|-13.101% | 3.4352(-30.9566 | 0
U = -107* 1n. 0 0. 0 -26.2058 | 5.24667
V= 1.1850 x 1074 1. -3.9677 | 10.573 |-3.1949| k.7017| 0O
v = 0.83669 x 10-* 1. {0 0 0 0 -6.1517
S >operationd =1 |0 -2.528L | 0.2403 |-52.461 |[-0.9050
Operstion For;g;ena:g e o _ "o
upy = 107 1n. 0 26.2058 | O
Uy = -1_0‘lL in. 0.88929 | 27.0833 | 1.0375
v, = 1.1850 x 107% 1n. |0 0 0 ]

vy = 0.83669 x 10~4 1p. -0.93626 | -0.86807{-1.0375

——

> > Operation J =1 | 0.04697| 52.421 | o

Use of operation J liquidates the T and Ty residuals and

affects little the balance in the other degrees of freedom. The remsining
reslduals are consldered negligibly small, the moment of 309 inch-pounds
being approximately 3 percent of the meximm moment in the ring. As in
the previous problem the 1ndividusl displacements can be determined from
the magnitudes of the group operatlons and thus the unknown moments and
tangential forces at A and D calculated.
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Although the celculatlions of the group operations shown herein have
been carried out on a computing machine with five significant figures
meintained wherever possible, sufficlent-accuracy for engineering
purposes can be obtained by the use of a slide rule. In developlng this
procedure a slide rule was used for all computatlions and the results
agreed satisfactorily wlth those ghown hersin.

Oval-Shaped Ring with Intermal Bracing

The ring shown in figure 8 is used as a third example of the new
relaxation procedures. As a check on the results of this procedure the
system of-equations glven by the operations table and external forces
1is also solved by the exact mathematicel methods of matrix calculus and
of -the growing-unit method. In order that the charts and tables of
reference 6 could be used in determining the influence coefficilents,
the following physical characteristics of the elements of-the ring are
asgumed:

Segments AB and EF:

Segments BC, CD, and DE:

yre
]
%
N
o
5
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ET = 106 1p-in.2
L = 18.85 in.
Segment EG:
y = 222 _ 40
T
e = 4% _o.10
A
B=0
ET = 107 1b-in.2
L = 16.97 in.

Because of the symmetry about a line through AGF only cne-half of the
ring need be consldered. Joints A, G, and F are then restrained from
rotating or displacing tangentially and camnot be subjected to radial
forces. The assumed positive directions of the displacements and of
the forces and moments at each Joint are shown in figure 8. From the
foregoing assumptions, the influence coefflcients and the operatlons
teble given in table 11 are determined.

The horlzontal extermal forces of 1000 pounds at C and D are
resolved into thelr 'ba.ngential and radial components. Thus the
external forces are:

Rg = 965.93 1b )
To = - 258.82 1
7 (21)
By = - 965.93 1b
TD = = 258-82 1b _)
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The matrix calculus solutlon of the system of equations given by
these external forces and by the operations table 1s first obtalined so
that the equilibrivm of the ring as given by thls solution will provide
a check on the whole setup. Joint G 1s considered fixed so that a
unique solution to this system of equations is obtainedj thus there are
14 degrees of freedom to be considered. The 1li unknowns are found by
the method of reference 9 to be:

vy = - 605.73 x 1073 in. ’5}
wy = 40.825 x 1073 radten

vg = 35-144 x 1073 in.

uy = - 300.06 x 10-3 1n.

Vg = - 1L.445 x 10-3 radian

664.55 x 10~3 in.

Vo =
ug = - 72.282 x 1073 1n.
> (22)
= - 22.975 X 10-3 radian
vp = - 94734 x 1073 1in.
vy = 90.130 x 1073 in.
wy = 6.2337 X 1073 radien
vy = - 42.621 x 1073 in.
up = 32.513 x 1073 in.
vp = - bh.648 x 1073 in.
. -

These displacements glve the following values of the unknown moments
and tangential reactions at A, F, and G on the bars rather than on the
Jointa:
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N, = - 3118.8 in.-1p ™
T, = 402.51 1b

105.43 in.-1b _

S5

- 1_82.57 1b } (23)
Ng = - 371.06 in.-1b

0.43 1b

&

Tg = 584.98 1b »

Figure 9 is the bendling-moment dlagram for the ring with these reactlons
applied. .
By examining the equllibrium of one-half the ring under these

reactlons and the external forces, the accuracy of the operations table
is established. Since R, and Rp are zero, the summation of forces

in the verticel direction is simply:
The sumatlion of forces in the horilzontal direction 1s:

D Fg= Ty - Tp - Tg = 0.10 1b (25)

The summetion of moments gbout point G is:
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2 Mg

: 12
Ny + T, Eau O e 24(0.70711{,

+ Ng + Np + Tp(24)(1 - 0.70711) - 1000(2 x 36 x 0.25882) (26)

- 3118.91 + 402.4k9(57.941) - 371.06 + 105.43

- 182.56(7.029%) - 18635.0k

17.45 in.-1b

The equilibrium conditions for the half ring are approximately
satisfied, the maximum percent error being a moment of less than 0.1 per-
cent of the applied couple of 18, 635 inch-pounds. It is considered that
the accuracy of the operations table is established by this equilibrium
check.

Approximately 20 man-hours by an unskilled computing-machine
operator were required to solve this system of 14 equations. It is
estimated that a skilled operator familiar with the Crout method would
require about 10 man-hours. .

In epplying the Crout method to this problem the coefficlents of
the linear equations are assumed to be mathematically exact and, there-
fore, as many flgures as could be carried on the 10-bank computing
machine are used throughout the computation. In this way an accurate
solution is obtained and the additional computing work is not great.
Afterward the values of the unknowns can be rounded off to the physically
correct number of significant figures.

Use of the growing-unit method of solution on this ring is demon-
gtrated as follows. This method is described in detail on pages 39 to 46
of reference 5. It 18 demonstrated on this new ring as an application of
the procedure tov-a ring with meny intermediate Joints between the center
line of symmetry points. In applying the growing-unit method to this
ring the units are comblned into bars of Increasing length until dis-
Placements of all points are kmown such that the only unbalanced forces
remaining act In the radial direction at A and F when unit radial dis-
placements are undertaken at A and F. Then these forces at A and F can
be eliminated by appropriate radial displacements of A and F and the
final distorted shape determined.

The first units to be combined are AB and BC. In order to effect
this combination, the displacements of B required to maintain the balance
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of B during a unit radial displacement of A and unlt radlal, tangential,
and rotational displacements of C must be determined. The displacements
of B requlred to maintain the balance of B while point A is displaced

radially 10-3 inch are glven by the equations:

'\

N = - USk.3hwg + 6.7238vg - 78.L4llug + 5.9020 X 1073 = 0

By = 6.7238wg - 12.093vg + 0.55690uz - 4.5778 x 1073 = 0 3 (27)

Tp = - 78.41lwy + 0.55690v; - 84.510uy + 1h.662 x 1073 = o_)
The solution to these equations is: wg = - 0.026434 x 10-3 radian,
vg = - 0.38424 x 1073 inch, end ug = 0.19549 x 1073 inch.

If the forces and moments at polnts A and C due to a displacement
Vp = 10-3 inch and due to the foregolng displacements wg, v, and ug

are summed, the followlng equatlons are obtailned:

R, = - 2.6618 1p )
NC = 1'00699 ino -lb

> (28)
Rg = - 1.8871 1v

Ng, Rg, and Ty are zero since that is the condition satisfled by
equations (27).

The displacements of B required to maintain balance at B during
unit rotational, radial, or tangential dilsplacements of C are determined
In 8 similar manner and are collected in table 12.

The forces and moments glven in the last seven rows of this table
constitute the influence coefficients for a new unit of the ring, namely,
the segment ABC. This unilt is not a bar, the center line of which is an
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arc of a circle, but rather one composed of two arcs of circles. This
combining of units, extended until the entire ring is one segment, 1s
the main principle of the growing-unit method.

Bach columm of table 12 represents a group displacement made up
of individusl displacements of points A, B, and C. Tet these group
displacements be identified by the Roman numeral given at the head of
each column. For example, group II is made up of the displacements

wg = 1073 radian, wy = - 0.21631 X 1073 radian, v = - 0.23971 X 103 inch,
upg = 0.T419T X 10-3 inch, and vy = Vg = uo = O. The moment at C, for
instance, caused by the application of Xrr units of the group dis-
placement IT l1s then

! NC = - 389.56III (29)

With a similar notatlon for all other forces and group displacements,

equations (30) may be set up representing the requirements for equilibrium

of Joint C under the external forces acting at that-polnt, balance of B -
being malintalned.

NC = - 389-56sz - 10-093XIII - 53-77th =0 M
Ry = - 10.093x; - 6.7529xIII - 10.615:rIV +965.93 =0 % (30)
Tg = = 53-T71xry - 10.615xy7y - 54-199xpy; - 258.82 = 0 D

The solution to this system is xpy = 1.0476, xyyp = 217.61, and

xpy = - 48.436, and the following forces and moments are introduced at
A and D:

Ry, = - 557.43 1b R

Np = - 2666.6 in.-1b _
~ (31)

Rp = 18k.66 1b

Tp = 626.46 1b )
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The forces and moments at D are added to the exﬁemal forces applied to
the ring at D and are balanced after the unit problem for the segmént

at ABCD is estsblished. The R, force is not balanced until the complete
ring is one segment and until the R, and Ry residuals can be balanced

together.

The.next unit to be considered is the combination of the ABC segment

with bar CD into the segment ABCD. The problem is to find the forces and
moments at A, D, and E due (1) to a unit radlal displacement of A with
Joint D fixed and (2) to unit radial, tangential, and rotational dis-
placements of D with A and E fixed. Joints B and C are free to displace
so as to maintain the balance at B and C in each of these four cases.

By determining the magnitudes of xy7, X777, 8nd X1y required to
balance C in each of these four cases, the requlred displacements of
both B and C ars implicitly determined and the unit problem for segment

ABCD solved.

The magnitudes of the xir, Xyyy, end Xy operations regquired to

balance Joint C when A is displaced radially 1073 inch and B permitted
to displace so as to remaln in balance are glven by the following
equations:

Ng = - 389.56x11 - 10.093xp77 - 53-T7lxpy + 10.699 = O
Rg = - 10.093xy7 - 6.7529%777 - 10-615x1y - 1.8871 =0 (32)
Tg = - 53-T7ixyy - 10.615x777 - 54.199%1y + 3.2615 = 0O

The forces and moments at C to be balanced are glven in group I in
table 12. The solution to these equations is xi; = 0.021L97,

xr7T = - 0.53843, and =xpy = 0.14430. TUse of these multiples of

operations II, IIT, and IV and of a unlt amount of group I results
in the following forces and moments at A and D:

Ry = - 0.94505 1b )
Np = 6.7928 in.-1b
' , (33)
Rp = - 0.7h492k 1b
Tp = 0.77749 1b )
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The forces and moments given by groups V, VI, VIL, and VIIT in

teble 13 are the influence coefficilents for segment ABCD. For example,
the forces and moments introduced at A, D, and E due tv a unlt radial
displacement of D with A and E fixed and with B and C in balance are
glven by VII. With these sets of coefficients it 1s possible to
balance Joint D while the balance of B and C is preserved. The forces
and moments to be balanced at D are (1) the external forces on the
ring at D and (2) the forces and moments which are introduced at D by
the balancing of C and which are given by equations (31). The
reslduals to be balanced at—D are thus:

Np = - 2666.6 in.-1b )
Rp = - 965.93 + 184.66 = - 781.27 1b B (34)
Tp = - 258.82 + 626.46 = 367.64 1b ‘J

The equations which condition the balancing of Jjoint D, from con-
sideration of groups VI, VII, and VIII, are seen to be:

ND = = 3)4-6-881';}'1 - 16-697IVII - 1"3'71‘53"VIII - 2666.6 = O—T
Ry = - 16.697xyp - 5.6500%y1y - 12.458%; 177 - 781.27 =0 > (35)
Tp = - 43.745xyp - 12.458xy7r - 50.817xypry + 367.6k = O_J
The solution to these eguations is Xyp = - 3.3100, xrp = - 328.09,
and Xypy = 90.518, which give the following forces_;__a.nd momenttsa:
R, = 293.71 1b )
Ng = 4889.4 in.-Ib
> (36)
Rg = - 522.69 1b
Tg = - 149.69 1b D
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As in the balancing of C, a tangential force and moment are introduced
at A by this balancing of D, but because of symmetry the equilibrium
of A 1s not disturbed by these. The R, forces will be balanced later

end the residuals at E wlll be balanced when the influence cosfficlents
for segment ABCDE have been determined.

In order to find the Influence coefficlents for bar ABCIE, the
forces and moments at A and E due to a radial dlsplacement of A with E
fixed and at A, E, and F due to unit radial, tangential, and rotational
displacements of T with A and F fixed must be determined. By determining
the magnitudes of groups VI, VII, and VIIT reguired to balance D in each
of these four cases, the required displacements of B, C, and D and the
requlred forces and moments are determined.

The magnltudes of the groups VI, VII, and VIII required to balance D

when Jolnt A is moved radlally 10'3 inch are given by the following
equations:

ND = - 31(.6.88xVI - l6°697xVII - ]{-3-7)-I-5XVIII + 6-7928 =0 j
) Rp = - 16.69Txy; = 5.6500%,17 - 12.458%, 111 - 0.T492% = 0 L (37)
Tp = - 43.745xy; - 12.458xp1p - 50.817xypp + O-TTTH9 = o_/

The forces and moments at D to be balanced by groups VI, VII, and VIII
are given by V in table 13 and are the constant terms in equation égﬂ)-
The solution of these equations is xyp = 0.028042, xyp = - 0.42660,

and Xy 0.09574L4. The summation of forces and moments due to a

unlt magnitude of group V and the foregolng multiples of groups VI, VII,
and VIIT are:

~ 0.36050 1b )

b
]

Ng = 4.1055 in.-1b
f (38)

o

- 0.31703 1b_

3
]
I

. 0.19226 1b J
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In a simllar menner the complete set of influence coefficients for

segment ABCDE is determined and is given in teble 1k. For example, the
forces and moments in group XI are the forces and moments introd.uced
at—A, E, F, and G by a unlt radlal dlsplacement of E with A, F, and G
fixed and with points B, C, and D free to displace g0 &8s tC remain in
equilibrium. With these influence coefficients Joint E can be balanced
while the balance of B, C, and D is preserved.

The forces and moments to be balanced at Joint E are those introduced
by the balancing of Joint D with groups VI, VII, and VIII and are glven
by equation (36)-

The equations in Xy, Xy;, and Xyqy; balancing Joint E under these
loads are:

Ng = - 533.92:':X - 38.099xXI - 29.579xy1 + 4889.4 =0 )
Ry = - 38.099x; - 49.295x; - 53.432x. - 522.69 =0  (39)
Tp = - 29.579xx - 53.432xyy - 76.322xy77 - 149.69 =0 By

The solution to “these equations 1s xy = 11.184, xyy = - 51.518, and

Xyt = 29-771 eand the forces at A, F, and G introduced by this

balancing of E are:

Ry = 67-974% 1b _1
Rp = - 266.68 1p e (40)
Rg = 70.668 1b D

The tangential forces and the moments introduced at A, F, and G are not

considered in thils balancing of the half ring, since these are
equllibrated by the forces and moments from the other half of the ring.

The final combination of units wlll be the combination of- 'ba.r BIH )

with the unit ABCDE. When this union is effected. the influence coef-
ficients for the half ring as a unit will have been dotermined and the
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radial forces at A and F can bé balanced simultanecusly. The radial
forces at Joints A and F due to a unit radial displacement of A with F
fixed and to & unit radial displacement of F with A fixed must be
determined. In both cases Jolnts B, C, D, and E are displaced so as to
remain balanced.

The equatlions glving the magnitudes’ of groups X, XI, and XIT
required to balance Joints B, C, D, and E when Joint A 1s displaced
radially as In group IX are:

Ng = - 533.92x; - 38.099%y - 29.579%ypy + 4.1055 =0 )
Rg = - 38.099xx - 49.295xyy - 53-432xxyp - 0.31703 = 0 » (k1)
Tgp = - 29.-579%x - 53-432xyy - 76.322xy77 + 0.19226 = 0~J

The solution to these equations is xyx = 0.0094398, xg7 = - 0.051804, and

Xyrr = 0.035128 and the forces introduced by & unlt magnitude of IX and
by these multlples of groups X, XI, and XIT are:

R, = - 0.29857 1b )
Rp = - 0.33361 b r (42)
Ry = 0.035176 1b

-/

The equations giving the magnitudes of groups X, XI, and XIT required
to balance Joints B, C, D, and E when Jolnt F is displaced radially .

1073 inch are:

Ng = - 5‘33.92xx - 3.8‘099x.'XI - 29’579xXII - 5.9020 =0 j
Ry = - 38.099xy - 49.295x¢7 - 53.h38xygry - k.5778 =0 > (43)
TE = - 29-579XX - 53-’4-32ij: - 76-322][XII - lh--662 =0 J
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The solution to these equations is xy = - 0.017182, xx7 = 0.50354%, and
Xerr = - 0.53797 and the forces introduced at A, F, and G by a radial

displacement of F of 10~3 inch and by the foregoing multiples of—-
groups X, XI, and XII are:

Ry = - 0.33361 1b . )
Rp = -~ 1.4470 1b > (4h)
Ry = 1.1156 1b )

The forces given by equations (42) and (44) represent the influence
coefficlents for the entire half ring and are labeled groups XIIT and
XIV, respectively. These forces permlt calculation of the multiples of
groups XIIT end XIV required to balance the radial forces at A and F.
These forces are the total forces remaining from the balancing of G, D,
and Ej R, 1s given by the sum of the R, TForces of equations (31),

(36), end (40) and is:
Ry = - 557-43 + 293.71 + 67.974 = ~ 195.75 1b

The Ry force 1s the force Introduced by the balancing of E alone
and 1s given by equation (40). It is: ;

Ry = - 266.68 1b

The equations giving the magnitudes of groups XIIT and XIV required
to balance Jolnts A and F under those loads are:

Ry = - 0.2985Txygyrr - 0.33361lxyxy - 195.75 = O
(45)
Rp = - 0.3336lxgyyr - 1.4470xg7y - 266.68 = 0
The solution to these equations is Xy = - 605.73 and

Xy = = 44.646. The radial force at G inmtroduced by this balancing
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ie - 71.11k4 pounds, but the R; force given by equation (40) in the

balancing of E is 70.668 pounds. The difference between the two,
- 0.446 pound, is considered negligibly small compared to the applied
loads of 1000 pounds. ’

With the balancing of Joints A and F and the substantiation of the
balance at G, the entire half ring is balanced. The total deflectiqns
in each degree of freedom can now be calculated and used to determine
the unknown bending moments and tangential forces at A, F, and G. In
order to calculate these deflections the balancing eguatiomns (30), (35),
(39), and (45) give the magnitudes of the group operations involved
while the equations determining the group influence coefficlents give
the individual operatlions involved in each group.

Table 15 gives the magnitude of all group displacements from I
to XIV implied in a unit application of any one group- For example,
row X In this table indicates that a unit magnitude of group X (that is,
Xy = 1) is equivalent to the sum of the effects of XyIII = 2.1 85,

Xypp = - 4-6760, Xpp = - 0.16186, and v = 1073 radian, or the sum of
the effects of Xry = 2.9219, X = 1.7552, Xrp = - 0.19736,
g = 1073 radien, wp = - 0.16186 x 1073 radien, vp = - 4.6760 x 1073 inch,

and up = 2.1885 x 1073 inch. During the solution of the problem the

magnitude of group X which was explicltly used was ll.184, as given in
the last column of table 15.

From teble 15 the total magnitudes of each group operation may be
found. For example, the total magnitude of group VI is:

Il

%y = (1)(- 3.3100) + (0.028042)(0) + (- 0.16186)(11.18k)
+ (0.037474) (- 51.518) + (- 0.0022427) (29.771)
+ (0.024h9k) (- 605.73) + (0.022857) (- 44.646) (46)

- 22.975

The total displacement wp 1s:

wp = (xVI) X 1073 = - 22.975 X iO'3 radian (462.)

Similarly the displacements of all points except point B may be
calculated from table 15 and are given in the lagt row of that table.
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. Point B was dlsplaced during the application of groups I, II, III,
and IV, and therefore the magnitude of its displacement must be calcu-
lated as indicated in the followlng example: .

wy = (- 0.026434 x 1073) (- 605.73) + (- 0.21631 X 10-3) (- 11.h44k%)

+ (0.035554 x 1073)(664.55) + (0.017847 x 1073)(- 72.286)  (47)

40.825 x 10~3 inch

where the first number in each product is the magnitude of wp I1nvolved
in each unit application of groups I, II, III,'and IV, respectively.

The total'displacements used are assembled in equations (47a).

'VA = = 605'73 X 10-3 in. _\
g = 11.0.825_X 10-3 radian
vp = 35-14k x 1073 1n.
ug = - 300.06 x 1073 in.
Wy = - 11.4bk x 1073 radten
Vo = 664.55 x 1073 1n.
us = - 72.286 x 1073 in.
> (47a)
vy = - 22.975 x 1073 radian
v =~ 94731 x 1073 1n.
up = 90-127 x 1073 1n.
wp = 6.2331 X 1073 radian
vg = - 42.620 x 1073 in.
up = 32.511 X 1073 in.
vF = - ll-ll--6)+6 X 10-3 An. - : —/
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These total displacements constitute the unknowns of the system of
equations given by the operations teble and the extermal forces;
comparison between this growing-unit and the matrix calculus solutions
given by equations (47a) and (22), respectively, indicates good agreement
for the displacements. In fact, the forces and moments glven by the two
methods differ by less than 1 percent and therefore are given only for
the matrix method (equation (23))-.

Several general remarks are made about the growing-umnit method:

(a) In determining the influence coefficients and in balancing the
external forces and moments, sets of equations with the sams
left-hand sides but wilth different constant terms are used
geveral times. This simplifies solutlion of the equations
and reduces the computational work considerably.

(b) In order to obtain sufficient accuracy of solution for rings
with meny Joints, calculating machines must be used; five
significant figures were carried throughout the calcu-
lations. However, on the simpler rings such as the circular
ring and the egg-shaped ring discussed previously, slide-
rule accuracy for determining the displaceéments in a
combined operation is probably suffliclient for engineering
purposes.

(¢) A check on the influence coefficiemts for composite bars is
obtained by epplylng Maxwell's theorem of reclprocal
deflections. This is a valueble device for assuring
accuracy at each stage.

In epplying the new relaxation procedures to this ring, it would
have been possible to.use the general method described for the egg-
shaped ring, that is, to consider the residuals after each operation and
develop a satisfactory combined operation to reduce as many residuals as
possible. However, the number of degrees of freedom involved in this
ring is large and, therefore, the mumber of residuals to be considered
in testing the efficacy of a particular operation 1s large.

The loading on the ring provides & clue to overcoming this difficulty.
No extermal loads are aspplied at A, B, E, F, and G; moreover, A, F, and G
are points along the center line of symmetry. Therefore, 1f in balancing
D and E the balance at the other Joints 1s preserved by sultable
displacements, attention 1s fixed on the two Joints D and E and the pro-
cedure described for the egg-shaped ring can be used effectively. It
will be recognized that this procedure 1s essentially a comblnation of
growing-unit and relaxation methods of solution.

In executing the proposed method the bar ABCD, free only to displace
radially at A and fixed at D, is considered first. The equations giving
the displacements of A and B required to maintain balance of these polnts

while joint C is rotated through 10~3 radien are:



Ry = - 7:1310v, + 5.9020wg - L.5778vy + 1h.662u5 =0 N
Ng = 5.9020v, - k5k.3hwy + 6.7238v - 78.41luy - 38.489 x 1073 = 0
L w8y
Ry = - b.5T78v, + 6.7238wy - 12.093v, + 0.55690my - 1.8576 x 1073 = 0
Ty = 1h.662v, - 78.410w; + 0.55690v; - Bh.510u; + 45.876 x 103 = 0 y

1.0195 x 1073 'inch, wy = - 0.32255 x 1073 radiem,
vg = - 1.7842 x 1073 inch, and uy = 1-5277 X 10_3. inch. These displacements ccmbined with the
unlt rotation of C yleld:

The solution to these equations is v,

NC = - 3%6-56 in.~-1b- ™
Ry = - 17.678 1b
Te = - 40.663 1b
> (49)

ND == 38-1@:11:10-1%.

RD = 1-8576 Ib

Tp = 45.876 1b D

The moment and tangential force introduced at A are not consldered umtil the balancing of the
ring is camplete.

9QLT "ON NI VOUN
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In & similar mamnmer the forces and moments for unlt radilal and
tangentlal displacements of C are determined, as shown in table 16. The

forces and moments given by groups XV, XVI, and XVII constitute the
Influence coefficlents for the displacements of C with A and D fixed and
with Joints A and B balanced. Use of these coefficlents permits focusing
of attentlon on C and D, the Joints at which the extermal forces are
applied when C. is beling balanced.

The forces and moments introduced at C and D when D is displaced a
it amount in each degree of freedom and when E, F, and G are displaced
80 as to maintain the balance thereof are calculated and shown in
table 17. ,

Teble 18 is an operations table consisting of unit magnitudes of
group operatlons XV to XX. Table 19 is the relaxation table for this
ring which uses these group operations. The extermal forces applied
a8t C and D are given in the first row of table 19.

A discussion of each step in the relaxation process is given as
follows.

Step l.- Because of the antisymmetry of the loading and of the
quasisymetry of the ring about a horizontal axis operations XyyT = 1

and Xyrx = -1 are epplied as a first approximation to the deflected

shape. The forces and moments introduced are as glven in the following
table:
Forces and X

moments N, T T

Operation ¢ RC c D RD D
(XIVI) = 1 -17.678 |-5.4150|-12.928| -1.8576|-2.2277| 13.781
(xIX) = -1 -1.8576 | 2.2277] 13.781(-11.535 | 6.2441|-12.706
> ->Operation K = 1{-19.536 {-3.1873| 0.853|-13.393 | k.0164| 1.075

Operation K is used to balasnce the RC residual; the same operation

reduces the other force residuals put introduces large Ng

Np residuals.

Step 2.- In order to reduce these moment resldusls an entisymmetrical
end wp 1s made, as shown as group operation L:

combination of o

and
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Forces and
t N T N R T
Operation e c Fo C D D D
(V) = -346.56 |-17.678 |-h0.662| -38.489| 1.8576( 45.876
(XVIII) = ~38.489] -1.8576| 45.876[-392.46 |11.535 |-42.305
S ->Operation L = 1{-385.04 |-19.536 | 5.214|-430.95 |13.393 | 3.571

However, use of operation I. by 1tself would retntrodu&e large Rd and

Rp

residuale, and therefore operations K and L are combined so that the

R, residual will be smaller and the Ry residual eliminated, as shown

in the following table:

Forces and
moments Nb RC TC ND RD TD
Operation :
Operation L = 1 -385.04 |-19.536| 5.214(-430.95 | 13.393] 3.571
-3.3346 X Operation K 65.145 10.628 [-2.84k| Lh.660(-13.393 |-3.5846
> —>operation M = 1 | -319.90 | -8.908| 2.370|-386.29 | © -0.0137

The new force residuals introduced by operation M are less than 30 percent
of the orlginal reslduals and, therefore, the rate of convergence lg felt

to be adequate.

Step 3

therefore, symmetrical displacements vg
seen that such a combination would introduce large tangential resilduals

at C and D.

+~ The radial resldusls at C and D have the same sign and,
and vp are undertaken.

It is

Therefore, a tangentlal dlsplacement of C (D could have been

chogen instead) such as to eliminate the Tg and Tp forces is under-

taken.

end by the comblnatlon are denoted as operatlion N.

The forces and moments introduced by the individual dlsplacements
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Forces &nd
moments N R T N T
Oporation c c c D Rp D
(V1) = 1 -17.678 |-5.4150 |-12.928| -1.8576|-2.2277| 13.781
(XIX) = 1 1.8576) -2.22771-13.781| 11.535 |-6.2441{ 12.706
-0.53201 x (XVII) 21.632 | 6.8773| 26.709|-24.406 | T7.3316|-26.587
> ->o0Operation ¥ = 1| 5.811 |-0.7653| © ~14.730 |-1.1400| =0.100
The use of operatlion N reduces substentiaelly all the residusls except Nb-

Step 4.~ In order to reduce

Nc &and at the same time keep the T
and Tp residuals small, a combination of groups XV and XX is made.
Group XX is included since a force increasing the residual Ty would be
introduced by the use 'of XV alone.

Forces and .
moments N T N T
Operetion c Re c D Rp D
(V) =1 -346.55 |-17.678|-40.662|-38.489| 1.8576| 45.876
0.91279 x (XX) 41.875] 12.579| %5.616[-38.616(11.597 |-45.876
> —>Operation 0 = 1|-304.67 | -5.099| 4.954|-77.105[13.455 | ©

Steps 5 and 6.~ After operation O is used, the lasrgest force resldual
is approximately 6 percent of the applied forces and the moment residuals

are small.
reslduals.

It was considered desirable to reduce further the force
Therefore, operation I was used agaln so as to reduce Rp

the largest force residual, and then XVII was used so as to reduce the

resulting Ty residual.

4 percent of the external force is considered small enough.

A check table using the total dlsplacements 1s used as
the accuracy of the combined operations and on the relaxation table.-

After this gixth step the largest residual of

a check on

The

total Individual dlsplacements are calculated as discussed in the previous

two examples and are as follows:
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(e}

13

- 596.18 x 1073 in.
36.779 x 10-3 radien
0.22394 x 1073 in.

- 30k.69 x 10'3'in.
- 14.32 x 1073 radian
561.66 X 1073 in.

~ 114.61 x 1073 in.
- 18.4 x 1073 radian
- 133.66 x 10-3 in.
3.7242 x 1073 in.
7.4813 x 10-3 radian
30.507 x 10~3 1in.

- 41.708 x 1073 1n.
59.979 X 1073 in.

114.52 x 1073 in.

NACA TN No. 1786

)

> (50)

_J

It is pointed out that—certain of these displacements differ
conslderably from those glven by the exact solutions of the matrix
calculus and growing-unit methods, mainly because the relaxation solution
ls approximate and in it Joint G 1s permitted todisplace radlally.

The unknown reactions given by the foregoing relaxation procedure

are:
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Ny = - 2851.1 in.-Ib )
T, = 380.21 1b
Np = 140.16 in.-1b
> (51)
Ng = - 440.45 in.-1b
Tg = 648.18 1b _')

Conslderation of the equilibrium of the half ring gives:

S Pg = 380.21 + 224.09 - 648.18 = - 43.88 1 B
ZFV =0 ‘ '
> %

- 2851.1 + 380.21(57.9%1) - LLO.45 + 140.16 & (52)

- 22L.09(7.0294) - 18,635

-1331.8 in.-1Db

-~

-

The moment equilibrium unbalence is approximately 7 percent of the
applied moment and is considered satlisfactory for engineering purposes.
If a more accurate representatlon of the final deflected shape and
consequently of the bending-moment diagram is desired, several more
operatlons in the relaxation table could be underteken and the residuals
at C and D further reduced.

The bending-moment diagram given by the reactions of equation (51)
is shown in figure 9 along with that of the exact solutions. The
external unbalanced moment of 1331.8 inch-pounds 1s applied linearly
along the ring as a distributed moment. If this unbalance 1s not
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digtributed in this manner, 1t would be concentrated at either Joint A
or joint F, depending on the direction in which the bending moments are
calculated, and would lead to large errors in the bending moment in the
nelghborhood of that Jolnt. It is seen from figure 9 that the agreement
botwoen the exact and relaxatlion solutions 1s good.

It 1s pointed out that; by slightly modlfying the determinatlon of
the influence coefflicient for Jolnt . D when E is fixed and F and G free
to dlsplace radially, a table similar to table 17 could be esbablished
and solved by matrix calculus methods. The slight modiflcation is to
make Vg = O 1In the equations corresponding to table 17. Buch a

solutlon 1s essentially the growlng-unit method, except that the ring is
combined from Jolnts C and D to A and ¥, respectlvely, rather than from
A to F. The total dlsplacements In each degree of freedom will be the
game In each approach.

CONCLUSIONS

This report contains recommendations as to tl&e cholce of the most
expeditious method of solution of the simitanecus llinear equations
represented by the operations table and the external locads. The
operations table is first esteblished in accordance wilth Southwell's
suggestions and, together with the extermal loads, defines completely
the problem of stress distribution in a relnforced panel or of the
moment distribution in a fuselags ring. However, the following
generalized suggestions can be made:

l. In most reinforced panel problems the use of the relaxation
procedure ls advantageous.

2. Solution of the equatlons defin:fng a reinforced panel problem
by means of the electric amalogue is adviseble when many closely related
problems heve to be investigated.

3. Ring problems are best solved by matrix methods.
4. In very complicated ring problems a combination of matrix methods
with the growing-unlt and relaxastion methods may become advlsabls.

Polytechnic Imstitute of Brookliyn
Brooklyn, N. Y., June 25, 1947
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TABLE 1.- OFERATTORS TABIE FOR EFTHFORCED PANEL

[I‘umes are in 1b; displacementd, in In. X m“EI

Forco

=1 ~=0.8 2.00 h6.8 2.00
pel 2.00 -52.2 2.00 5.2
Yy =1 35.8 2.00 -101..6 k.00 56.8 2.00
W=l 2.00 51.8 5.00 -110.4 £.00 5L.2
=1 16.8 2.00 -101.6 k.00 h6.8 £.00
=1 2.00 51.2 h.0o -110.4 2.00 5.2
=l 36.8 2.00 ~50.8 2.00
=1 2.00 51.2 2.00 . .2
Blook 1 = 1
k.00 k.00 -8.00 8.00 -8.c0 8.00 -4.00 k.00
TA-V:E-TJ.-Tl-l
"Block 2 ™
k.00 -4.00 8.00 -B.00 8.00 -8.00 k.00 -%.00
TBxTr-TI=TO=l '
(1) Ty =l -4.00 5.00 +h.8 6.00 46.8 2.00
(@ v =vg=vy=l .00 4.00 -8.00 8.00 -34.8 6.00 46.8 2.00
(3) TB - Tr -l k.00 J{--m 6.00 -ﬁ-E £.00 1.2
(%) Y=ty =Tp=1 4.00 -k.00 B.co -8.00 6.00 9.2 2.00 51.2

95
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TABLE 2.- RELAXATION TABLE FOR REINFORCED PANEL - PROCEDURE 1

E}ycles of operations shown should be repeated until residuals are
" considered negligibly small. Forces are in 1b;

displacements, in in. x 107%]

OpemtionForce Y, Yg | Yg Yp | Y7 Yg Yg Yo

Fxternal forces | -120 60 . 60
VBlock 1 = 25 10 | -10 20 | -20 20 -20 10 -10
<110 | -10 20 | -20 20 -20 70 50

g = 2.35 110 5 | -238 9 110 5 0 0
o} -5 | -218 | -11 130 -15 T0 50

vy = k.65 0 0 218 9 | -473 19 218 9
0 -5 0 -2 | -343 L 288 59

vy = T+33 0 0 0 o] 343 14 | -372 14
o| - o} -2 0 18 [ -84 73

YBlock 2 = 3+5 | -1k 28 | 28 28 -28 1k -1k
i | -19 28 | -30 28 -10 =70 59

Vp = 0.371 1 19 1| -4 1 19 0 0
' 15 0 29 | -711 29 9 =70 59

g = 1.385 0 0 3 71 5 1 =153 3 T1
15 0 32 0 34 | -1k -67 130

vy = 2.81 0 0 0 0 5 1l 5 | -156
15 0 32 0 39 o} -62 26

11 4 24 8 31 8 -66 -22

vg = -0.235 -11 0 24 -1 -11 0 0 0
0 by 48 T 20 8 -66 -22

vy = -1.025 0 0 -48 -2 104 -4 -48 -2
0 L 0 5 12k y | -1k 24

vy = -2.65 o} 0 o} 0 | -124 -5 135 -5
0 L4 0 5 0 -1 21 -29




-1.8
0

60
-10
50
o)
50

0

10
70
0
0
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60

0

2.9] -0.3

5.4 |-h2.2

~20
-3.0
-28.
0

-20

o)

0
0]

20

-L.41-35.3
-16.2(-48.9 20.4§ 55.6

")-*--l

-33.2 |-kg9.Lk[-23.0 | 7O

-8.9|-69. 4
-7-2] k9.4

-20

-1.8

-7.6}-25.6 |-14.8{-13.6 | 20.k| 55.6

7-2 -ll-ot)'l'
-0.6|-15.2

81.3
0
7.2

20

-14.8] 14.8(-14.8] 1k4.

-8.2|-40.8]-14.8]-13.6] 20.4} 55.6

-4.1} k0.8

.3 0
6] 6.6 -5.0| k8.9| -1.6]-42.3

1.3

-14.3| -81.3]-24.3[ 20

-5-9

"20-2

-3.6
16.4

-10

0
2.8

O\
~

O N\
- O

1.5

.5]-23.8

0

5.9

5.9

3.6

9

=T 4 T4

201 "1-6-14'
.6

10
-0

-120

IN\CO
~Q

N0
O

NN

°Q

[@orces are 1n 1lb; displacements, In in. X 10‘@
-1.850

Force

Operation

lock 2 ~

TABLE 3.- RELAXATION TABLE FOR REINFORCED PANEL - PROCEDURE 2

(1) = -1.482

(2) = -0.901

Block 1 = 27

External forces

'V‘B = -O . 297

58
VB

(3) = -0.689

(Ll-) = -0-825
(1) = -0.188

(2) = -0.390

VBlock 2

(4) = «0.135

\

T~ \,NACA/
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[:Forces are in 1bj displacements, .in in. X lO‘E*]

TABLE L4.- RELAXATTON TABLE FOR REINFORCED PANEL - FIXED ENDS

NACA TN No. 1786
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-110.4
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E‘orces are in 1b; displacements, in in. X lO"ﬂ
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TABLE 5.~ OPERATIONS TABLE FOR REINFORCED PANEL - GROWING-UNIT METHOD

gr-an of
(o] oo MmHoO
RF N

Forces and
ments

1
1
1

Operation
(1) v A

(2) g =1
(M) vg=1
(5) VI =1
(6) VK =1
(1) vy

(8) Vo=1

(3) Vg

8 A @ &8 & &
P N P I S G L
[s,Y » . ~ ~ QI S QA S O
W= X ~— K= 3 K~ X VA/\XXII\XXII\
B aE PR R B anns
B~ RE~ERXR-S L EFF 2 HG ~
O ¢ 2+ o v o\ o s\0 o & b=s 2D
O O~ O OO0 O~ 0 O~ OO O~
o &=~C0 o
FaHdARANIEB 2RI U LT LEER
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; displacements, in in. x 107}

20 | o
BV | &3

o | mone

(Y] O A O (=)
§ | §§%

R-/9 .h_.ﬂolo._

Ql [1 X ng)

% | ?97

8}

n..lm_ o

-111
-111

115.2
4.2

-50-3

-1.8

697

-67.9

-3.3
-37-9
41.2
22 4

63.6

Forceas are in 1b

-120
120

TABLE 6.- RELAXATION TABLE FOR RETNFORCED PANEL - GROWING-UNIT METHOD

External loads
-1.45 x (25)
0.925 x (28)

-2.37 x (10)

Operation




TABLE T.- OPERATIONS TABLE FOR CIRCULAR RING

F“ﬁiiei’éﬁ Ny Tp L) Ry Ty e Ta

Operation (in. -1b) (1b) (in.-1b) (1b) (1pb) (in. -1p) {Ib)

(1) wy = 1073 radten | -261.95 | -49-079 | -29.966 | -4.7T33 | 6k.675

(2) u, = 1073 1n. -49.079 | -50-296 64.675 | -22.4k1 | s51.516
(3) wg = 1073 radlen | -29.966 | 64.675 | -439-849 | 31.443 | -50.6k2 56.5117 | 6.632
(4) ¥ = 1073 1n. 4733 | 22 | 3143 | -12.338 | 20.1% 8.8:2 | 0.5k
(5) uy = 1073 1n. 64.675 | ®1.516 | -50.642 | 20.14 | -52.618 6.632 9.0685
(6) wg = 103 reaten 56.5117 | 8.842 | 6.632 | -157.809 |-1.563
(7) vy = 1073 1in. 6.632 | o0.52% | 0.0685 | -1.563 |-0.322
L

c9
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TABIE 8. - RELAXATION TABLE FOR CIRCULAR RING

Forces and. -

moments NA TA NB B.B TB Nc TC
Operation (in.-1b) | (1b) (in.-1b) | (Ib) (1b) (in--1b) | (1b)
External Forces | -1.84 -8.75 ~55.0 59.5 38.1 -53.1 -23.9

-0.00778 x (4) 1.84 0 0.7 0.1 0.1 0 0
¥ 8.75 -54.3 59.4 38.0 ~53.1 -23.9

~0.2 x (B) 0 8.75 -14.0 4.3 8.0 0 0
0 0 -68.3 63.7 30.0 53.1 -23.9

-0.353 %X (C) 0 0 8.6 2.2 2.2 53.1 0
0 0 ~16.9 61.5 27.8 0 -23.9
-T77-8 x (D) 0 0 ~h72 -34.0 -0.2 0 23.9

0 0 549 27.5 27.6 0 0

-2.98 x (E) 0 0 549 -27.5 -27-5 0 0

0 0 0 0 c.1 0 0

Check-table
results 0.017L 0.0030 0.5095 | -0.0043 | -0.0053 | -0.0726 | -0.0121
W
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TABLE 9.- OPERATTONS TABIE FOR EGO-SHAPED RIHG

Forcee and

moments 1Y Ny By Ts Tg By

Queration (1v) (1n. -Ib) (lb). (1p) (in. -1n) (1) (1b) (1b)
(1) vy = 07 1. 3.31833 | 8.0em5 | 2.6961 | 3.9617L
(2) w3 = 20 radten | 8.g2216 307.866 1.h697 | -13.101h 61.242 8.10267 0
(3) v = 107% 1. -2.6961# 114697 | 4.00991 3.4352 8.10267 | 0.66138 o
{4) ug = 10"T 1a. 3.06r71 | -13.100% | 34352 | -30.9566 0 0 26.2058
(5) ¥ = 107% radten 6124 -8.10267 0 288,367 2.95602 | -5.24667 | -7.35%%
(6) vg = m-’f in. 8.1.0567 0.66158. 0 2.95622 | -l.g0205 | -0.8829 | -1.11900
(1) v = 10¥ in. 0 0 26.2058 ».0u667 | 0.88029 | -27.0833 -1.0375
(8) v = 104 in. -7.352% -1-11900 | -1.0375 -1.2400
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TARLE 10.- RELAXATTON TABLE FOR EGG-SHAPED RING

9gLT *ON NI VOVN

Forcee and. ¢
moments | Ry Ny Ry Tp No Rg Te Bp

Operatlon. (1b) (1n. -1b) {1p) (1b) (in.-1b) (1b) (1b) (1)
External forces [-500 0 0 0 0 0 0 =500
-14g.2 x (1) 500 -1330 hoo -502 0 0 0 0

0 -1330 402 -592 0 0 0 -500
=403 X (8) 0 0 0 0 2960 ks 418 500

0 ~1330 402 -592 2960 451 118 4]
1336 x (F) 0 0 0 29 -2485 =451 63 0

0 -1330 Lo2 563 k75 0 481 0
256 x (I) 0 1615 402 62 0 138 -8 0

0 285 0 501 415 138 k73 )
kog x (¥) 0 0 0 9 760 -138 19 0

0 285 0 -4g2 -285 0 o2 0
9.4 x (J) 0 2l -2 493 9 0 -4o2 0

0 309 -2 1 -276 0 0 0
Check table -0.465 1 309.971| -2.231 0.938 | -280.405 -0.202 -0.351 | -0.279



TARIE 11.- OPERATTORS TABLE FOR OVAL~SHAPED RING

¥oroes emd N Ty ¥o B Te L)
Operaticn (1) (1n.-1b) {m) (1) {1n. -1v) (1p) () {in.-1v)

v, = 1073 1. -7.1310 %.9020 k. 5778 1h.662
wg = 10°3 radian 5.9080 ~hsh. 3 6.7238 78,511 -38.489 1.8576 §5.876

¥ = 1073 1n. k.5778 " 6.7238 -1£.003 0.55690 -1.8576 -2.2077 13-781

up = 1073 in. k662 78.511 0.55690 84510 bs.B76 -13.78L 50,97k
v = 1073 ratten -38.489 1 x5-876 43237 0 -T7.623 -38.48¢9
v = 1073 1. 1.8%76 -2.0077 -13.781 o 9.9831 o 1. 8976
vg = 1073 sh. h3.976 13-781 43.97% -T7-623 0 -100- 3% 4.816
wp = 073 mdian ~38.489- 18576 15.876 432.37
vy = 2073 tn. 1.8576 2.2877 -13.781 o

v = 1073 in. k5876 13.781 hg. 974 -T7-623
¥g = 1073 radiam i -38.489
g = 1p-3 in. l-w
1y =~ 103 1n. 35.876
¥y = 1073 1,

g~ 1073 1in.

Tarves and By Tp e B *r By %

Opersfsicn (1) (1) {in.-1b) () (1v) (1») (1)

'A = 10'3 in.

¥y = 1073 radian

¥y = 103 in.

g = 1073 1n.

¥y = 1073 radisn 1.85716 5.876

9 = 1073 1n. 22977 13.781

vy = 10°3 1n. -13.781 45.974

¥ = 1073 radim 0 -7-623 -38.480 1.9516 45.876

¥ = 1073 1n. -5.5231 o ~1.0576 2.2277 13.78L

up = 1073 12. o -100.3% 15.876 13761 bo.9Th

wg = 10-3 radian o 876 4,076 -Glg.2% <18.0%6 -67.080 -5.5020 16.005

v = 1073 m. -2.2277 13781 d8.056 53957 40.533 45778 1.33%

ng = 1073 in. 13.780 k9.97h -67.080 -0.533 ~126.37 ~1h.662 -1.33%5

Ty = 10-3 1n. -5.6020 49778 -1k.668 “7-1310 0

g = 103 ., 16.02%5 1.339 ~1.33% 0 -1.8886

L3 2
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TABIE 12.- GROUP OPERATIONS IN GROWING-UNIT METHOD FOR SEGMENT ABC

Ny = -b5h.3bwy + 6.7238vy - 78.41lup - (R.H.5. In Ny equation) = 0
Bg = 6.7238wg - 12.093vg + 0.55690ug - (R.H.S. In Bg equation) = 0
Tg = ~78.41lwg + 0.55690vg - 84.510up - (R.H.S. in Ty equation) = O

Group I II ITT Iv
Displacement | v, = 1073 in. | wy = 1073 radtem | vy = 1073 1n. ug = 1073 1n,
Operation Wo=Vo=ug=0]va=vp=u=0|va=Wp=u=0 |Vp=wg=7g=0

(-103) x right-hand
glde in equation

for: N, in.-1b 5.9020 -38.489 1.8576 15.876
Ry, 1b 45778 -1.8576 2. 2277 13.781
Tg, 1b 14.662 45.876 -13.781 49.974
(103) x dilsplacements
of Joint B:
vy, radian ~0.026434 -0.21631 0.035554 0.017847
v, In. -0.38424 -0.23971 -0.17353 1.1763
ugy, in. 0.19549 0. 74197 -0.19720 0.58253
Resultant
forces and moments
Ry, Id -2.6618 10.699 -1.8871 3.2615
No, in.-1b 10.699 -389.56 -10.093 -53.TTL
By, b -1.8671 -10.093 -6.7529 -10.615
Tg, 1b 3.2615 -53. 771 -10.615 ~5k.199
Np, in.-1b 0 -38.489 -1.8576 45.876
Rp, 1b 0 1.8576 ~2.22TT -13.781
Tp, 1b 0 45.876 13.781 4o.9Th

NACA,
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TABLE 13.- GROUP OPERATTONS IN GROWING-UNIT METHOD FOR SEGMENT ABCD

N = -389.56xry - 10.093xrpy - 53-T7lxry - (R-H-8. inNg) =0
By = -10.093xpy - 6.7529x;77 - 10.615x1y - (R.E.8. in Bg) =0
To = -53.T71xpr ~ 10.615xrTT - 54.199xyy - (R-H.S. in Tg) = 0
Group Y VI Vi1 YIII
Displacement (I) =1 wp = 1073 radien | vp = 10°3 in. up = 10~3 in.
Operation Wp=Vp=ty=0 | (I avp=up=0 [(I)=wp=up=0 [(I)=vp=vp=0
(-1) x right-hand
slde in equation
for: Hg, In.-Ib 10.699 -38.1489 1.8576 45.876
R, b -1.8871 -1.8576 -2.2277 13.781
T, 1b 3.2615 45.876 -13.761 ho.g7h
Magnitudes of ]I;,
(IIT), and (IV):
X7 0.021497 -0.25291 0.046327 -0.0099019
XITT -0.53643 ~2.3436 0.10521 0.85346
Try 0.14430 1.556% -0.32084 0.76LT2
Forces and moments:
Ry, 1b -0.94505 6.7928 0. Tho2k 0.7TTT49
¥p, in.-1b 6.7928 -346.88 -16.697 -43.745
Rp, 1b -0.7hoRh -16.697 -5. 6500 -12.458
Tp, 1b 0.TTT49 43.7h5 -12.458 ~50.817
Ng, in.-1b 0 -38.489 -18.576 45.876
By, 1b 0 1.8576 -2.2277 -13.781
Tg, 1b 0 45.876 13.761 L9.g7h
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TABLE 1h4.- GROUP OPERATIONS IN GROWING-UNIT METHOD FOR SEGMERT ABCTE

Mg = -346.88xyp ~ 16.60 xy77 - 43.ThSxyirr - (R-E-S. in Fy) =0
Rg = -16.697xyy - 5.6500xg7y - 12.458myy77 - (R-E.8. In Rg) = 0
Tp = -43.745x7 - 12.458xp7r - 50.81Txyypp ~ (R-E.8. In Tp) = 0
Group X X XI Ir
Displacement (V) =1 wg = 1073 redian | vy = 1073 in. ug = 1073 in
Cperation w=vp=ug=0 [ (V)=vg=ug=0 | (V) =wg=up =0 (‘V)=wE=vE=-O
(-1) X right-hand
glde In equation
for: Np, in.-Ib 6.7928 ~-38.489 1.8576 }45.876
Ry, 1b -0.Tho2k -1.8576 -2, 2277 13-781
T, 1b 0. 77749 45.876 -13.781 k9.97h
Magnitudes of VI,
VII, and VITI:
T 0.0280k2 -0.16186 0.037474 -0.0022427
S 042660 46760 0.35713 0.59436
TyTIT 0.0957h4 2.1885 -0.39100 0.83963
| ¥orces and moments
Ry, 1b -0.36050 k.1055 -0.31703 0.19226
Ny, in.-1b 1.1055 -533.92 -38.099 -29.579
Ry, 1b -0.31703 -38.099 -49.295 -53.432
Ty, 1b 0.19226 -29.579 53432 ~76.322
Rp, 1b 0 ~5.9020 -4.5778 -1h.662
Rg, 1b 0 16.025 1.3355 -1.3355
WA
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DABIE 1%, - PETEEHENATION OF TOTAL DIEFLACEMENTS IN GEOWING-UNIT MEFHDD

Eolated tebles ¥y, ¥, 5ol 1y from table 12 (I1), (O}, and (IV) from tahlee 13 or 15
Prime displacement Magnitules of gromp dis-
plagemwrts explicitly
va = 1073 tn.fwy = 1073 rmdien|vg = 163 1n.|ug = 1073 1n, | xp = Lfwy = 1073 redtanfwy = 1073 in.|up = 1073 in.{ used in balancing
" b I Iix w v vI iz YOI
I 1 0
I 1 1.0k76
oI &13.61
¥ 1 k36
v 1 0.021keT 3 0.1k30 1 [\}
¥I -0.2%2g1 35 15564 1 -3.3100
YiI 0.086327 0.10521, -0.32084 1 .3332198
L pun 0. 15 0.57346 0. 1 .
x 1 -0.3293362 -0.56732 o.m 1 0.00804% 0. 42660 Ou hh gg
X -0.19736 . 2.9219 -0.16186 -h.5760 2.% 11.18%
I 0.010 % -0.35%26 o.omE 0. *"a’ém -11,518
X 0.0 O o.ﬁ‘rgo =0, o-%ﬁ 0.165‘5.3 20.771
banni 1 0. +50331 0. 507 1 0.02k4ok 0.4636 0. -egi. )
I -0.0017RER -0.64586 -0.%7005 0. 020857 ~0.0%9576 0. Rﬁ
Yotal displacemmts -605.73 <11.4kk 66455 ~T2.085 £05.73]  -e2.975 -5h.731 90.127
Belnted tablos (vI), (VIL), and (VIOI) from tubles 1k or 15 (x), {11), =nd (XIII) from tahle 1%
Prime digplacenant Magnitudes of group dis-
Placomants explioitly
Ry =1 13-10"3mum 1'3-10"31:1- 1:;-10‘31:1. Iy =l T].-].D"3:I.n- wsed in dalanoing
{motp opecations o 'x b x bunns v
I 0
It 1.0k
pans -':‘IJ.‘Z-&TE
v .A35
¥ [}
VI ~3.3100
I -323-09
YIiT 90.718
Ix 1 0
X 1 11.15%
I 1 53,58
band 1 £9.T7L
banss 1 0.000k308 -0.051808 | 0.035128 1 HS
v -0.017188 0.5035% -0.53797 1
Total displasesants -£05.73 6.2331 42,60 3R.511 -605.73 kb 6N

@
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TABLE 16.- GROTUP QPERATIONS IN RELAXATION METHEOD FOR SEGMERT ABCD

By = -7.1310v4 + 5.020wg - 4.5778vg + 14.662uy - (R.H.8. In Ry) = 0
My = 5.9020v, - 45h.3hwg + 6.723Bvg - 78.41%uy - (R.H.B. InHp) =0
Ry = ~4.5778v, + 6.7230ws - 12.093% + 0.55690ug - (R.H.S. in Bg) = 0
Ty = 146627, - 7841wy + 0.55650%; ~ 84.510u - (R-E.S. in Tp) = 0

Group v vl iz
Displacement Vo = 1073 radisn Yo o= 1073 in. . U = 1073 in.
Ope:mtion 'v‘c-uc:'ﬁD-vD’anO H‘c-ucaﬁb-TD-uD-o 'H'U=V‘G='H'D=TD|=U,D=O
(-103) x right-hand
side in squation for:
Ry, 1b 0 0 0
Bg, in.-Ib -38.489 1.8576 4%.876
Rg, 1b -1.8576 ' -2, 2277 13.761
Tg, 1b 45.876 -13.781 49.974
(103) x aisplacements of
Joints A and B:
vy, in. 4.0195 ~0. 70855 1.2253
Wy, radian -0.32955 0.054263 -0.014540
vg, 1n. -1.7842 0.0g98882 0.70554
up, 1n. 1.5277 -0.33579 0.82205
Yorcep and momenta:
Ny, 1n.-1b ~346.56 -17.678 -4o.662
Bg, 1b -A7.678 5. 4150 -12,
Ta, 1b ~40.662 -12.928 50,203
Np, in.-1b -38.489 -1.8576 Ls.876
Rp, 1b 1.8576 -2. 2277 -13.761
Tp, 1b 145,876 13.7781 ka. o4
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TARLE 17.- GROUP OPERATIORS IN RELAXATTON METHOD FOR ERGNENT CIEF-G

Fy = -89, 2k - 18,0567y - 67.080ny - 5.9020vg + 16.029vg - (R.E8. 1nNy) = 0
By = -18.056wy -~ 53.957%g - 40.333ug - h.T70rp + 1.33%5vg - (R.H.8. In By) = 0
Ty = ~67-080wy - 30.533vy - 126,370, - 15.662vg - 1.33057g - (®.E.E. InTp) =0
By = -5.9020wg = h.5770vy - 1b.6620g - 7.13107x - (RE.5. in By} =0
Ry = 16.02%%g + L.3359vg ~ 1-33%5uy - 1.8886vg - (B-H.8: nFy) =0
Group o Iox x
Dierpd % ¥ = 1073 redia ¥p = 1073 1n. up = 1073 1n.
Operaticn ! Y =Yg =¥ 2 Tp=p =0 LR e R e A T Tl el
{-103) x right-hand
sids in equatlont
g, in.-1b -38.489 -1.8=76 4s.876
Bg, 1b 1.8576 -£2.P2TT -13.781
Ty, 1b b5 876 13-781 h9. 974
By, b o 0 o
iRg, It 0 Q 0
(103) x displacements
of Jolpts X, ¥, and Gt
%g, radian -0.1703 -0.03277T5 -0.008773
vy, in. 0. 42970 0. 10052 ~0.78327
g, 1n. 0. 7hlis6 0,£31658 0.Tgh21
vy, io. -1.11h 0. 32647 -1.1229
Vg 1n. 2.2753 -0.%7676 -1.1900
Forces ol moments: E
¥g, dn.-1d -38.48g 1.8576 hs.876 g
Rg, b -1.8%576 -2,2277 13.761
Tg, Ib k5.876 -13.871 Lg-g7h £
¥y, in.-1b ~392.46 11.535 =42.305 LA
By 10 1535 -6.2440 12.706 o
T, 1b -h2.305 12. 06 -50.250 ,_,
>
:NAE;; =)
[ - L] 4 e +




I:Fomes and moments at Jolnts A, B, B, ¥, and G are zero for all oparatioms:l

TARLE 18.- GROUP-OPERATIORS TABLE FOR RELAXATION METHOD

Forces and

maments o R Tg ¥p Bp Tp
(in.-1b) (1b) (1) (4n.-1b) (1b) (1b)
Operaticn _
(V) = 1 -3h6.45 -17.678 20.662 ~38. 489 1.8576 1;5.876 _

(XVI) = 1 17.678 5. 4150 -12.928 -1.8576 -2.2277 13.781
(IVII) = 1 40,662 ~12.928 -50.203 45.876 -13.78L hg.g7h
(VIID) = 1 -38.489 -1.8576 45.876 ~392.46 11.535 -42.305
(X1X) =1 1.8576 2. 2277 ~13.781 11.535 ~6.24h1 12.706
(Xx) = 1 45.876 13.761 49.974 -12.305 12.706 -50.259
G
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TABIZ 19.- FELATATION TARIE FOR GHOUP CPERETTONS

Yoroes and
8 it By B % o
[ tperatio (z0) (tn.-m) | (D) (1b) {tn.-1n) (1) (1) (1=, -1)
Extsrmal loads 1] o966 0
! w2 X (K) ~5500 -6 _3 . ~hos0
- 0 -1
2 -18.% x (W) % pl -3k m
0 164 L
3 21 x (1) 1046 28 3 i
1046 0 45 -100
5 k.08 x (0) ~1eh6 21 2 -31k
0 21 25 Sk
5 -15.7 % (X) 306 50 -13 210
306 - 20k
é -0.76 % (Tved) 1 % g =35
Cheok tabls 0.001 0.310 0.023 0.156 g.-;s aﬁm -g.hjo g.ﬂs
Yorces and.
Step mmente By T Bp b ]
: Operticn (1v) (1) (10.-Ib) (1) () () (av)
External 966
1 302 x (X) 118 %
2 -18.% x (M) 2’!(; &g
3 21k x (7} -ﬁ -217.
8 6
k L.o8 x (o) - -0
63 b 1.3
3 -18.7 x (%) 63 -7
o
5 -0.76 x (I¥II) 10 -ﬁ
10 i
Check teble 5.390 -10.6%0 =L T3 £.001 ~0.T950 -0.003 0-0k7

%L
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Figure 1.- Reinforced panel with conditions at both ends specified in

>

Figure 2.- Reinforced panel with conditions at one end specified in terms

of force and at the other in terms of displacements.
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Figure 3.- Reinforced panel with 12 bays.
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rigure 4.- Forces transmitted through TFigure 5.~ Currents flowing through
structural elements of reinforced branches of direct-current network
panel. analagous to reinforced panel of

figure 4.
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Figure 6.- Circular ring with antisymmetric loads.
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Figure 7.- Egg-shaped ring with symmetric loads.
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Figure 8.- Oval-shaped ring with positive directions of forces and
moments shown. ' '
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Figure 9,- Bending -moment diagram for oval-shaped ring with internal bracing.
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